Поговорим немного о физике

мошенничество от науки, глобальные ошибки химиков и хемио-кунсткамера
Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Пт авг 17, 2012 4:15 am

ПЯТЫЙ ШАГ К ИЗБАВЛЕНИЮ ФИЗИКИ ОТ ПУТАНИЦЫ

КЛАССИЧЕСКИЙ ПЛАНЕТАРНЫЙ АТОМ ПРЕКРАСНО РЕШАЕТСЯ В СТАТИСТИЧЕСКОЙ ФИЗИКЕ С ИСПОЛЬЗОВАНИЕМ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ (или плотности вероятности) ЭЛЕКТРОНОВ ПО КООРДИНАТАМ И ПО ИМПУЛЬСАМ.

Полный текст - http://osh9.narod.ru/gl/at/at3.htm

С подобными функциями в Статистической физике очень плохо разобрались все корифеи физики, а также все профессора и все академики ВСЕГО МИРА. В результате этого они пошли по пути откровенного фантазирования, пытаясь на фантазиях строить НОВУЮ ФИЗИКУ, которая не соответствует природным процессам.

КЛАССИЧЕСКИЙ ПЛАНЕТАРНЫЙ АТОМ В СТАТИСТИЧЕСКОЙ ФИЗИКЕ
ЭЛЕКТРОМАГНИТНАЯ УСТОЙЧИВОСТЬ АТОМОВ

Наиболее наглядно эффективность последовательного применения законов классической физики в области микромира можно продемонстрировать на примере объяснения строения атома.

Более глубокий анализ данного явления показал, что обычной теории Максвелла - Лоренца с учетом законов сохранения энергии и механического момента вполне достаточно, чтобы установить факт невозможности излучения поперечных электромагнитных волн для электрона, находящегося на круговой или эллиптической орбите вокруг ядра, а также сформулировать те условия, при которых это излучение вполне возможно.

СЛУЧАЙНЫЙ ХАРАКТЕР ДВИЖЕНИЯ ЭЛЕКТРОНОВ В АТОМАХ

Как известно, в начальной теории Бора рассматривался отдельный изолированный атом водорода. Однако полностью изолировать атом от внешних воздействий практически не удается. В реальных условиях электроны атомов всегда подвержены действию случайных внешних факторов подобно тому, как это имеет место в случае движения атомов или молекул в газах. Если в газах это проявляется главным образом в броуновском движении или диффузии частиц, то в случае орбитального движения электронов в атомах обстановка становится более сложной. Для электронов, движущихся по атомным орбитам, последствия такого взаимодействия можно разбить на две группы.
В первую группу следует отнести такие взаимодействия с внешними факторами, которые приводят к изменению момента количества движения электрона за счет обмена импульсом или механическим моментом с другими частицами. Изменение механического момента электрона, как правило, влечет за собой изменение полной энергии атома и, как следствие, приводит к излучению или поглощению электромагнитной энергии атомом.
Сюда можно отнести столкновения второго рода атомов и молекул с изменением внутренней энергии частиц, облучение атомов быстрыми частицами и электромагнитными волнами с резонансными частотами поглощения, которые могут привести даже к отрыву электронов от атомов, возможное взаимодействие орбитальных электронов с нуклонами ядра, играющих роль перевертышей (или катализаторов) для реализации обмена энергией между орбитальными электронами и электромагнитными волнами и т.д.
Траектории в атомах вместо круговых или эллиптических за счет подобного взаимодействия становятся деформированными и незамкнутыми. Про такую траекторию обычно говорят, что она размыта или размазана в пространстве.

http://osh9.narod.ru/at/at3/at3.files/atom3.7.gif

Аватара пользователя
chemist
Сообщения: 10369
Зарегистрирован: Пн июл 26, 2004 2:14 am

Re: Поговорим немного о физике

Сообщение chemist » Пт авг 17, 2012 11:39 am

Это заклинание надо будет выгравировать на надгробной плите автора сего топика:
... в Статистической физике очень плохо разобрались все корифеи физики, а также все профессора и все академики ВСЕГО МИРА. В результате этого они пошли по пути откровенного фантазирования, пытаясь на фантазиях строить НОВУЮ ФИЗИКУ, которая не соответствует природным процессам.
I D E A = A u

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Пт авг 17, 2012 1:40 pm

ОБРАЩЕНИЕ КО ВСЕМ ФАНТАЗЕРАМ ОТ ФИЗИКИ

Полный текст - http://s6767.narod.ru/razn/vsem.htm

УВАЖАЕМЫЕ ГОСПОДА!

Прежде чем выстраивать все новые и новые фантазии в физике, от которых уже ломятся все средства массовой информации и которые все больше пополняют огромные горы никчемного мусора, очень советуем освоить для начала основы, азы Фундаментальной физики - Классической электродинамики и Классической статистической физики, в рамках которых могут быть прекрасно решены все основные задачи современной физики.

ВУЗовская инженерная физика приспособлена лишь для ограниченной практической работы и не раскрывает все секреты атомного мира. Она совсем не годится для успешного штурма микромира в силу своей ограниченности.

В качестве положительного примера предлагается прекрасная научная монография - учебник [1] http://s6767.narod.ru - Классическая электродинамика и Атомная физика.

Фантазеры всевозможных мастей, не знающих ни Классической электродинамики, ни Статистической физики, пышным, махровым цветом расцвели на трудностях физики, на трудностях экспериментальных методик. При этом каждый безграмотный фантазер пытается выдать себя за истца в последней инстанции, нагораживая все новые и новые абстракции, как правило, очень далекие от реальности.

А малограмотный народ находится в полном замешательстве, не зная кому и верить – новоявленным истцам или авторитетам прошлого. Но пока подавляющее большинство чиновников молятся на Эйнштейна, настоящие, наиболее грамотные физики продолжают упорно работать, добывая в упорном труде, в нелегких экспериментах крупицы истины. Хорошо известно, что истину никогда еще не удавалось навсегда запереть на замок или отменить очередным безграмотным Указом или Постановлением.

Очень часто бывает, что такой фантазер высосет из пальца очередную фантазию дома, лежа на диване и глядя в потолок, а потом шумит на весь мир о своих «достижениях». И остановить его невозможно – стоит до последнего на своем, поскольку, откажись он от своей бредовой идеи, так там ничего и не останется – лишь «нулевые» познания в физике.

ЧТО ОБЪЕДИНЯЕТ ВСЕХ ФАНТАЗЕРОВ И ОДНОВРЕМЕННО РОДНИТ ИХ С КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКОЙ

Фантазеры, как правило, начинают свои выступления с того, что обещают очень много «чудес» вплоть до переворота в физике и энергетике, океан бесплатной энергии и даже «золотые горы».

Однако проходит некоторое время, а результатов все нет и нет. И, разумеется, фантазеры своевременно тихо уходят в тень. Ведь популярности среди большого количества доверчивых людей они уже добились.

Аватара пользователя
Гесс
Сообщения: 13068
Зарегистрирован: Ср фев 15, 2012 11:19 pm

Re: Поговорим немного о физике

Сообщение Гесс » Пт авг 17, 2012 1:52 pm

Шаляпин А.Л. писал(а):ОБРАЩЕНИЕ КО ВСЕМ ФАНТАЗЕРАМ ОТ ФИЗИКИ

УВАЖАЕМЫЕ ГОСПОДА!

Прежде чем выстраивать все новые и новые фантазии в физике, от которых уже ломятся все средства массовой информации и которые все больше пополняют огромные горы никчемного мусора, очень советуем освоить для начала основы, азы Фундаментальной физики - Классической электродинамики и Классической статистической физики, в рамках которых могут быть прекрасно решены все основные задачи современной физики.

Фантазеры всевозможных мастей, не знающих ни Классической электродинамики, ни Статистической физики, пышным, махровым цветом расцвели на трудностях физики, на трудностях экспериментальных методик. При этом каждый безграмотный фантазер пытается выдать себя за истца в последней инстанции, нагораживая все новые и новые абстракции, как правило, очень далекие от реальности.

Очень часто бывает, что такой фантазер высосет из пальца очередную фантазию дома, лежа на диване и глядя в потолок, а потом шумит на весь мир о своих «достижениях». И остановить его невозможно – стоит до последнего на своем, поскольку, откажись он от своей бредовой идеи, так там ничего и не останется – лишь «нулевые» познания в физике.

ЧТО ОБЪЕДИНЯЕТ ВСЕХ ФАНТАЗЕРОВ И ОДНОВРЕМЕННО РОДНИТ ИХ С КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКОЙ

Фантазеры, как правило, начинают свои выступления с того, что обещают очень много «чудес» вплоть до переворота в физике и энергетике, океан бесплатной энергии и даже «золотые горы».

Однако проходит некоторое время, а результатов все нет и нет. И, разумеется, фантазеры своевременно тихо уходят в тень. Ведь популярности среди большого количества доверчивых людей они уже добились.
:deal:

Аватара пользователя
Biginelli
Сообщения: 6011
Зарегистрирован: Сб окт 29, 2005 11:15 pm

Re: Поговорим немного о физике

Сообщение Biginelli » Пт авг 17, 2012 2:11 pm

электрон родил позитрон и аннигилировался? :clap:
Tyrans descendez au cercueil!!!

Cherep
Сообщения: 23442
Зарегистрирован: Чт окт 30, 2003 9:22 am

Re: Поговорим немного о физике

Сообщение Cherep » Пт авг 17, 2012 6:52 pm

Biginelli,
а вы не рефлексуйте
вы распростроняйте
пусть отбиваются
или как там ваш солнцеликий намутил...
:mrgreen:

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Сб авг 18, 2012 3:26 am

ЧТО СЛУЧИЛОСЬ С ФИЗИКОЙ В ХХ ВЕКЕ ?

Полный текст - http://s6767.narod.ru/razn/cht.htm

Развитие теоретической физики в ХХ веке шло под флагом зарождения, развития и становления квантовой механики, а также специальной теории относительности (СТО). Принципы и постулаты квантовой механики и СТО, предложенные вначале как чисто методологический прием с целью упорядочения экспериментальных данных, превратились позднее в фундамент не только нового направления в развитии теоретической физики, но и целого философского мировоззрения. При этом для согласования с экспериментом использовалось, как правило, абстрактное математическое моделирование, не всегда адекватно отражающее реальные процессы, происходящие в природе.

Классическая физика попала в странное положение. С одной стороны, квантовая механика была не в состоянии справляться с экспериментальными данными без помощи фундаментальных законов классической физики, с другой стороны, квантовая механика "командовала" классической физикой, как наездник лошадью: здесь - можно применять законы классической физики, а тут - нельзя. Командовала, но при этом сама не являлась достаточно совершенной.

Многие физики не могли смириться с этим положением и всю жизнь пытались примирить экспериментальные данные с принципами и законами классической физики. В их числе такие видные исследователи, стоящие возле истоков квантовой механики, как Макс Планк, А.Эйнштейн, Э. Шредингер, А. Ланде.

Предлагаемая читателю работа [1] является очередной и, как нам представляется, плодотворной попыткой примирения экспериментальных данных с законами классической физики.

Интересно проследить основные этапы становления квантовой механики, а также причины и обстоятельства отказа от классической физики. Наиболее полно эти вопросы изложены в книге М. Джеммера [2].

Считается, что начало отказа от классических понятий при осмыслении экспериментальных данных положил в 1900 г. М.Планк. Активный сторонник классической физики, оказавшись не в состоянии объяснить спектральный состав излучения черного тела на базе представлений классической физики, он делает шаг в сторону от своих убеждений. Как "акт отчаяния", вызванный необходимостью найти "теоретическое объяснение... любой ценой, сколь высокой она ни была бы" [3], Планк делает допущение, что энергия осцилляторов не непрерывна, как этого требуют законы классической электродинамики, а дискретна. При этом минимальная порция энергии осциллятора зависит от частоты по закону Е = hv. Так, в обиходе физиков появилось понятие о новой универсальной постоянной h с размерностью эрг´с. Эта величина стала интерпретироваться как элементарный квант действия, определяющий дискретную структуру энергетических уровней осцилляторов. Всю свою дальнейшую жизнь Планк пытался примирить появление величины h с классической физикой, но... безуспешно...

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Сб авг 18, 2012 7:54 am

НАИБОЛЕЕ ТИПИЧНЫЕ ОШИБКИ, ДОПУСКАЕМЫЕ В КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКЕ – 2
Полный текст – http://s6767.narod.ru/naib/naib2.htm

ОБЩИЕ ЗАМЕЧАНИЯ И ВЫВОДЫ

Для начала позволим себе сделать некоторые общие замечания. Выдавать какую-то удачную математическую схему для выполнения некоторых полезных инженерных вычислений за серьезную физику – наиболее характерная черта квазисовременной абстрактной физики. Однако математические вычисления, как бы удачны они ни были, нельзя ни в коем случае выдавать за фундаментальную физику.

Хотя частично Эйнштейн и следует квантовым постулатам (например, в отношении фотонов – еще одного «его детища»), но по-прежнему достаточно суров по отношению к квантовой теории, заявляя в 1912 г.: «чем больших успехов добивается квантовая теория, тем бестолковее она выглядит» [1].
"Очевидно, в прошлом никогда не была развита теория, которая, подобно квантовой, дала бы ключ к интерпретации и расчету группы столь разнообразных явлений. Несмотря на это я все-таки думаю, что в наших поисках единого фундамента физики эта теория может привести нас к ошибке: она дает, по-моему, неполное представление о реальности. ... Неполнота представления является результатом статистической природы (неполноты) законов".
"
"Большие первоначальные успехи теории квантов не могли меня заставить поверить в лежащую в ее основе игру в кости... Физики считают меня старым глупцом, но я убежден, что в будущем развитие физики пойдет в другом направлении, чем до сих пор".
“Попытки найти единые законы материи, породить теорию поля и квантовую теорию не прекращались [5]. Результатом оказалось кладбище погребенных надежд.
Однако надежда не сбылась. Я полагал, что если бы удалось найти этот закон, то получилась бы теория, применимая к квантам и материи. Но это не так. Построенная теория, по-видимому, разбивается о проблему материи и квантов. Между обеими идеями все еще сохраняется пропасть” [5].

"К концу жизни Эйнштейн стал сомневаться в верности своих представлений [1] (с.448): "Теория относительности и квантовая теория кажутся мало приспособленными для объединения в единую теорию", - отметил он в 1940 г. Einstein A. //Science, -1940. -Vol. 91. P. 487. (T.4. C.229)
”Время покажет, будут ли его (Эйнштейна) методы иметь какую-либо ценность для теоретической физики будущего. Ясно, что его работа в данном направлении в целом не принесла интересных физических результатов”[1] (с.312).
В конце научного пути он напоминал путешественника, которому часто приходится в дороге менять виды транспорта. Но пункта назначения Эйнштейн так и не достиг” [1] (с.327).
: "Я считаю вполне вероятным, что физика может и не основываться на концепции поля, т.е. на непрерывных структурах. Тогда ничего не останется от моего воздушного замка, включая теорию тяготения, как, впрочем, и от всей современной физики" [1] (с.448).
А теперь сопоставим это высказывание с выводами достаточно авторитетного физика, нобелевского лауреата Р. Фейнмана:
"Ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершили глупость, пока мы не вырастем над собой" [7].
"И все же, если еще задержаться на минуту и посмотреть на фасад этого удивительного сооружения, имевшего столь громадный успех в объяснении столь многих явлений, то можно обнаружить, что оно вот-вот завалится и рассыплется на куски. Если вы поглубже вгрызетесь почти в любую из наших физических теорий, то обнаружите, что, в конце – концов, попадаете в какую-нибудь неприятную историю" [8].
Так эта проблема и осталась нерешенной» [8].
«Уловка, при помощи которой мы находим m и e имеет специальное название - «перенормировка». Но каким бы умным ни было слово, я назвал бы ее “дурацким” приемом! [9].
Подводя итог всему, можно заключить, что, знакомясь с новейшими абстрактными теориями квазисовременной физики, не следует сразу же им доверять безоговорочно, если в этих теориях не все ладится со здравым смыслом и с принципом причинности [11].

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Сб авг 18, 2012 10:13 am

НАИБОЛЕЕ ТИПИЧНЫЕ ОШИБКИ, ДОПУСКАЕМЫЕ В КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКЕ – 1
Полный текст – http://s6767.narod.ru/naib/naib1.htm

Говоря об уникальных свойствах света, нельзя не упомянуть более детально о таком глобальном понятии в физике, как мировой физический вакуум-эфир. Страсти вокруг мирового эфира не утихали на протяжении многих столетий. Мы же остановимся на последних событиях, относящихся к началу ХХ века. До этого очень многие светлые умы в физике пытались понять природу эфира и его роль, как в переносе света, так и в реализации силовых взаимодействий между частицами.
В отношении существования эфира в природе диапазон мнений среди физиков-теоретиков растянулся от полного его отрицания до безоговорочного признания факта наличия эфира в природе как переносчика всех силовых взаимодействий.
Трудности признания эфира как материальной среды, в которой распространяется свет в виде упругих колебаний, во-первых, связаны с непониманием среди физиков механизма образования поперечных волн в среде, которая не может быть твердым телом. С другой стороны, нет достаточно простого способа обнаружения факта перемещения лаборатории в этом эфире.
Все это привело к целому ряду абстрактных представлений об этой уникальной среде. В официальной физике было придумано даже новое название для обозначения данной среды - «физический вакуум», чтобы окончательно распрощаться с Ньютоном, а заодно – и с классической физикой ХIХ века.
Однако полностью порвать с механикой Ньютона авторам новых теорий так и не удалось. Мало того, все законы сохранения классической механики Ньютона выполняются неукоснительно во всех без исключения взаимодействиях полей и частиц в современной физике.
Выше было уже отмечено, что с упругими поперечными волнами в физическом вакууме-эфире нам удалось разобраться и – даже без особого труда. Кроме этого, физикам все же удалось найти экспериментальные доказательства того, что Солнечная система и Земля движутся относительно эфира со скоростью около 300 км/с [1]. Осталось лишь привести все экспериментальные данные к единой системе и более плотно заняться свойствами этой загадочной среды.
В начале ХХ века весьма энергичную атаку против эфира провел А. Эйнштейн. Он предложил ряд хорошо известных постулатов, а также математическую схему для вычисления различных эффектов в движущихся телах, поставив принцип относительности во главу своей теории [2]. При этом Эйнштейн заявил, что для успешного функционирования его специальной теории относительности (СТО) эфир ему совсем не нужен. И «отчаянные революционеры» в физике решили навсегда похоронить эфир как материальную среду, предложив вместо него большую груду абстракций и всевозможных «чудес».

Аватара пользователя
гаер*
Сообщения: 2438
Зарегистрирован: Пн июл 12, 2010 5:01 pm

Re: Поговорим немного о физике

Сообщение гаер* » Сб авг 18, 2012 11:10 pm

amik писал(а):По скромным прикидкам у аффтара осталось текста еще недели на две-три. Потерпим?
Конечно, надо дать высказаться до конца. Ведь возражений по существу пока никто не привёл. Да и автор ничего не нарушает.
Кого-то выкладываемая информация раздражает, но это это не может служить основанием ограничения свободы слова. Среди нервничающих едва ли найдётся доцент физики... Или кто-то всерьёз считает, что тексты Шаляпина могут нанести вред? Кому? Молодым химикам, нетвёрдым в физике? Или кое-кто уже за себя опасается?

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Пн авг 20, 2012 5:47 am

НАИБОЛЕЕ ТИПИЧНЫЕ ОШИБКИ, ДОПУСКАЕМЫЕ В КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКЕ – 3
Полный текст – http://s6767.narod.ru/naib/naib3/naib3.htm

Трудности и противоречия, возникшие в физике после введения Планком формальной квантовой гипотезы и модели фотона Эйнштейном, а также других постулатов в физике ХХ века. О «скачках» в природе. О явных противоречиях в теории Планка. Решение задачи Планка для спектра излучения абсолютно черного тела в классической физике.

Максу Планку как физику теоретику-профессионалу одному из первых довелось штурмовать мир атомов и их взаимодействия с излучением, поэтому в истории физики ему отводится одно из особых почетных мест. Этому событию посвящено огромное количество статей и монографий, включая и учебную литературу.
Однако теперь попытаемся посмотреть на данную проблему беспристрастно, т.е. просто с позиций физиков того времени с учетом всего имеющегося опыта решения подобных задач. Разумеется, спустя более сто лет с того времени это сделать намного легче, в начале же ХХ века в рамках классических представлений задача Планка казалась почти неразрешимой.
Расхождение теории Рэлея с экспериментом научные круги, по выражению Л.Д. Ландау, восприняли как “полнейшую научную катастрофу, как крах тех положений, которые составляли основу классической физики” [1]. Так велико было влияние лорда Рэлея среди ученых. Но никто не решился высказать сомнение относительно самой теории Рэлея: является ли она последовательной? Не являлись ли более последовательными теории Кирхгофа, Вина и Больцмана, в которых не возникло подобной катастрофы?
Чтобы лучше разобраться в том, что случилось в декабре 1900 года, когда появилось сообщение Планка “К теории распределения энергии излучения нормального спектра” [2], попробуем углубиться в некоторые детали электродинамики и термодинамики рассматриваемого явления.
В задаче о спектре излучения абсолютно черного тела (АЧТ) Планком была использована несколько упрощенная модель, в которой пустое пространство заполнялось простыми линейными осцилляторами, которые сравнивались с акустическими резонаторами, камертонами или колебательными контурами, со слабым затуханием и различными собственными периодами. Предполагалось, что за счет обмена лучистой энергией между осцилляторами в этом пустом пространстве установится стационарное так называемое черное излучение, соответствующее закону Кирхгофа. Но резонатор реагировал только на те лучи, которые он сам испускал и оказывался совершенно нечувствительным к соседним областям спектра. Планк сознавал, что даже если бы его формула излучения оказалась абсолютно точной, то она имела бы очень ограниченное значение – только как “счастливо отгаданная интерполяционная формула”.
В такой простой модели невозможно было учесть все особенности этой сложной задачи, например, проследить тот путь, который проходит энергия в результате ее многократного превращения из одного вида в другой. А ведь в этих превращениях и том факте, что атомы и молекулы в веществе при колебаниях случайным образом сталкиваются между собой и раскрываются статистические закономерности, установленные Максвеллом и Больцманом в молекулярно-кинетической теории. С учетом этих закономерностей данная сложная задача может быть решена полностью с позиций классической физики, т.е. без искусственного квантования абстрактных осцилляторов.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Вт авг 21, 2012 4:24 am

НАИБОЛЕЕ ТИПИЧНЫЕ ОШИБКИ, ДОПУСКАЕМЫЕ В КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКЕ – 4
Полный текст – http://s6767.narod.ru/naib/naib4/naib4.htm

О КЛАССИЧЕСКОМ СМЫСЛЕ КВАНТОВОЙ МЕХАНИКИ И ЕЕ МЕСТЕ В ЕДИНОЙ ФУНДАМЕНТАЛЬНОЙ ФИЗИКЕ

По причине несовершенства наших измерительных приборов в атомной физике были получены необычные экспериментальные результаты, которые не укладывались в привычных представлениях физиков начала ХХ века. На этой основе была построена специальная вероятностная математическая теория – квантовая механика, способствующая расчету полученных экспериментальных результатов, а также предсказанию новых.
В первое время смысл этого математического аппарата был совершенно не понят физиками. Однако в дальнейшем появились некоторые просветы, а вместе с ними и надежда на понимание смысла квантовой механики и ее математического аппарата с волнами де Бройля или пси-функциями.
Появление квантовой механики в начале ХХ века стимулировало огромный поток дискуссий по поводу природы микрочастиц и силовых полей.
Явления, которые наблюдались в микромире, были столь необычными, что микрочастицам был приписан особый статус квантовых явлений, в корне отличающихся от явлений, происходящих в привычной для всех классической физике.
В этом новом мире микрочастиц странности встречаются буквально на каждом шагу. С одной стороны, все микрочастицы совместно с электромагнитными волнами аккуратно соблюдают все законы сохранения классической механики Ньютона, как бы намекая на то, что все они, в общем-то, «ребята неплохие», и их, в принципе, при желании вполне можно понять.
С другой стороны, и микрочастицы, и электромагнитные волны в атомных явлениях «откалывали» такие квантовые «номера», что привели в замешательство весь научный мир.
Так, в чем же здесь дело? Попробуем постепенно в этом разобраться.
Прежде всего, что касается самих экспериментов в микромире. Авторы квантовой теории почему-то решили, что наши измерительные приборы являются идеальными, а все «фокусы» в экспериментах обусловлены исключительно особой природой микрочастиц. Здесь явно содержится логическая ошибка. По их представлению, оказывается виноваты не измерительные приборы с их несовершенством и даже некоторой грубостью, а все дело в особых, неуловимых, «квантовых» свойствах самих микрообъектов, которые никак не поддаются измерению.
Здесь мы имеем яркий пример того, когда пытаются, как говорится, переложить вину с больной головы на здоровую. Неужели хотя бы часть вины за квантовые «чудеса» нельзя переложить на измерительные приборы? Может быть, как раз все наоборот: микрочастицы – самые, что ни есть, классические объекты, а вот с помощью несовершенных приборов мы и выявляем различные квантовые закономерности. И это подозрение не лишено обоснования.
Обычные лабораторные приборы способны измерять лишь средние значения физических величин. Их в физике назвали «наблюдаемые» величины. При этом усреднение происходит, как правило, по большому числу частиц и по времени. Этот процесс называется набором статистики в эксперименте. Следовательно, в наших экспериментах мы как раз и получаем статистические закономерности в микромире, а отнюдь не характеристики отдельных микрочастиц.
С легкой руки теоретиков, эти статистические, квантовые закономерности были перенесены на отдельную микрочастицу и, в частности, на электрон. Это совершенно неправомерно, поскольку у нас даже нет в наличии такого прибора, чтобы тщательно проследить за полетом отдельного электрона в атоме. Так начинает выстраиваться «квантовая квазифизика», не отражающая реальных индивидуальных свойств отдельных микрочастиц.
Какой же выход из всей этой ситуации? Прежде всего, стараться не смешивать статистические закономерности в микромире, которые выявляются в экспериментах, с индивидуальными свойствами отдельных микрочастиц. Далее здравый смысл подсказывает, что следует просто вернуться в классическую статистическую физику с ее функциями распределения физических величин и постараться здесь разрешить все проблемы с микрочастицами и электромагнитными волнами.
Теперь попытаемся раскрыть основные секреты квантовой механики, которые до недавнего времени воспринимались не иначе, как тайна за семью печатями.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Ср авг 22, 2012 8:24 am

НАИБОЛЕЕ ТИПИЧНЫЕ ОШИБКИ, ДОПУСКАЕМЫЕ В КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКЕ – 5
Полный текст – http://s6767.narod.ru/naib/naib5/naib5.htm

РЕШЕНИЕ НЕКОТОРЫХ КЛЮЧЕВЫХ ЗАДАЧ АТОМНОЙ ФИЗИКИ В РАМКАХ КЛАССИЧЕСКОЙ СТАТИСТИЧЕСКОЙ ФИЗИКИ

§ 29. Электромагнитный механизм дифракции микрочастиц на монокристаллах.

На первый взгляд, в рамки обычных классических представлений не укладывались закономерности, которые проявлялись при отражении любых микрочастиц от граней совершенных монокристаллов. Частицы проявляли себя так же, как и рентгеновские лучи с длиной волны, равной длине волны де Бройля h/mv, для которых выполнялись условия Вульфа-Брэгга при отражении от кристаллических плоскостей. Особенно знаменательным было то, что существование гипотетических волн микрочастиц (волн материи) было предсказано де Бройлем за два года до экспериментов по дифракции микрочастиц на монокристаллах. Попытаемся произвести анализ этого явления, ставшего поначалу сенсационным и необычным, а в дальнейшем просто роковым для судеб физики.
При рассмотрении каких бы то ни было моделей дифракции микрочастиц в результате их взаимодействия с внешними макрообъектами следует учитывать, прежде всего, те экспериментальные данные, которые можно отнести к разряду твердо установленных фактов. К настоящему времени с высокой степенью точности и воспроизводимости результатов констатируется следующее:
1. Явления дифракции характерны для микрочастиц любой природы – электронов, протонов, нейтронов, а также для атомов и молекул, за что их и нарекли своеобразными волнами материи. Наличие у частиц заряда или его отсутствие может сказаться на коэффициенте отражения, но не на характере дифракционной картины. Здесь, пожалуй, можно опустить из рассмотрения, например, эффекты рассеяния -мезонов на протонах, которые также предполагается интерпретировать с точки зрения дифракционных механизмов.
2. Дифракция микрочастиц имеет в общем случае не поверхностный, а скорее объемный характер, обнаруживаясь при прохождении через монокристаллы, облете препятствий. В случае же отражения от поверхности монокристаллов картина дифракции в большей степени определяется физической природой монокристалла и в меньшей степени – состоянием его поверхности, в частности, процессами адсорбции или концентрацией дефектов на поверхности. Последние можно рассматривать как малые возмущения к основной картине дифракции на монокристалле, обусловленной его структурой.
3. Доминирующим фактором дифракции является величина относительной скорости между микрочастицей и макрообъектом. Если же говорить точнее, то для системы координат, связанной с монокристаллом, главным является импульс микрочастицы. Но эксперимент можно поставить так, что монокристалл будет двигаться с некоторой скоростью навстречу частицам. В том случае, когда будут двигаться навстречу друг другу и микрочастица, и монокристалл, не совсем ясно, что понимать под длиной волны де Бройля в разных системах отсчета, не говоря уже о механизме возникновения такой волны.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Чт авг 23, 2012 9:58 am

ТИПИЧНЫЕ ОШИБКИ, ДОПУСКАЕМЫЕ ПРИ ОТРИЦАНИИ ПРОДОЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ВОЛН (ПРЭВ).

Полный текст – http://s1836.land.ru/cl/osh.htm

При попытке отрицать существование продольных электрических волн (ПРЭВ), как правило, пользуются неполной системой уравнений классической электродинамики, а именно, лишь уравнениями Максвелла.
Для получения более полной картины электромагнитных волн следует учитывать и дальнейшее развитие классической электродинамики после Максвелла.
Для силовых полей имеют место выражения через силовые запаздывающие потенциалы (скалярный и векторный)

Е ( t ) = - grad  ( t ) -  A ( t ) /  t ,

B = rot A , A =  v / c 2 .

При этом также забывается, что силовые запаздывающие потенциалы и силовые векторы в любой точке пространства являются волнами, поскольку удовлетворяют волновому уравнению.
Даже в случае стационарных полей силовые потенциалы и силовые векторы имеют волновую природу, поскольку всегда являются запаздывающими полями, т.е. не могут распространяться мгновенно. Как хорошо известно, запаздывание поля есть определение его волнового характера.
Из приведенных уравнений хорошо видно, что в переменном электрическом поле магнитный вектор В может быть равен нулю, в то время как оба слагаемых для электрического вектора Е совсем не обязательно равны нулю.
В этом случае мы имеем дело с чистыми электрическими волнами, которые вполне могут носить и продольный характер.
Так, например, вдоль проводника электрический сигнал передается с помощью (ПРЭВ), в то время как по оси проводника магнитное поле равно нулю. И никакими фотонами это явление объяснить невозможно.
Типичная (ПРЭВ) проходит через плоский, цилиндрический или сферический электрический конденсатор, в котором эта продольная волна способна образовать резонансные частоты между пластинами конденсатора.

Подробный вывод основных уравнений Классической электродинамики на основе рассмотрения волновых процессов в физическом вакууме-эфире приведен в монографии

1. Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Екатеринбург. Изд-во УМЦ УПИ, 2006. 490 с.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Сб авг 25, 2012 12:35 pm

А.Л. Шаляпин, В.И.Стукалов

Полный текст - http://osh9.narod.ru/at/od.htm

ОДИН ИЗ ВОЗМОЖНЫХ МЕТОДОВ ВПОЛНЕ РЕАЛЬНОГО И ЭФФЕКТИВНОГО РАЗРЕШЕНИЯ ПРОТИВОРЕЧИЙ В СОВРЕМЕННОЙ ФИЗИКЕ

Как правило, в учебниках по физике квантовая механика противопоставляется классической физике, а специальная теория относительности (СТО) – классической электродинамике или еще больше – механике Ньютона, что уже совершенно лишено последовательной логики, поскольку Ньютон, как известно, с полями, фактически, не имел дела. На наш взгляд, подобное разграничение физики на отдельные части не является логически оправданным.
В настоящее время показано, что очень многие теоретические результаты, достигнутые в квантовой механике, могут быть получены в рамках классической статистической физики. В то же время, подавляющее большинство задач, связанных с движением частиц и полей, с большим успехом могут быть решены в рамках хорошо развитой классической электродинамики без использования СТО [1, 2].
В результате многолетних исследований установлено, что различные неточности, несоответствия и что еще хуже – противоречия можно встретить практически в каждом разделе физики. Например, насколько бы ни была совершенна современная квантовая механика, из нее не удастся вывести уравнения Максвелла-Лоренца или даже закон Кулона и силу Лоренца. На вооружении современной квантовой электродинамики в силовых полях имеются лишь фотоны, которыми, якобы, все время обмениваются электроны между собой. Однако с помощью этих фотонов, как ни стараться, не удастся получить ни магнитного поля, ни электрического поля в их реальном виде.
Поэтому методически более правильным было бы не противопоставление физики ХХ века физике ХIХ века, а своевременное, т.е. уже на самой ранней стадии изучения предмета разделение физики на прикладную (инженерную) и фундаментальную физику, т.е. на макро физику и микро физику явлений. К примеру, электрический заряд является чисто условным обозначением факта наличия силовых взаимодействий между частицами посредством волн. Это условное понятие не отражает в полной мере каких-либо фундаментальных процессов в природе, однако является очень удобным в повседневной инженерной практике для проведения необходимых вычислений в силовых полях или в электронных устройствах. Электрический заряд был введен Франклином как макроскопическая характеристика вещества и реально просто отражал избыток или недостаток электронов в веществе. В последствии это понятие было, вопреки логике, перенесено на отдельные микрочастицы. Получалось так, что отдельный электрон оказывался заряженным опять же электронами. «Заряженный» электрон означает примерно то же самое, что и влажная молекула воды. Здесь допускается явная логическая ошибка, когда макроскопическое свойство вещества переносят на отдельную микрочастицу.
То же самое, пожалуй, можно сказать и в отношении ряда других «нововведений» физики ХХ века – фотонов, волн де Бройля и др., когда статистические закономерности в микромире пытаются отнести к индивидуальным свойствам отдельной микрочастицы.
Инженерные понятия очень удобны в повседневной работе. Физики никогда не откажутся от электрических зарядов, токов, напряжений, омов, градусов Цельсия, градусов Кельвина и т.д. Как правило, это – макроскопические параметры внутренних движений частиц, и они не раскрывают в полной мере микроскопических процессов в веществе.
Точно также и физикам, работающим в области атомной спектроскопии или в физике твердого тела довольно трудно отказаться от фотонов, фононов, экситонов, плазмонов и т.д.
В опытах обычно измеряются средние характеристики процессов, т.е. среднестатистические закономерности в микромире. Квантовая механика вычисляет, в основном, средние значения величин в атомных системах. То же самое может вычислять и классическая статистическая физика с использованием функций распределения физических величин. В этом плане они очень мало, чем различаются, кроме разве того, что в классической статистической физике намешано гораздо меньше фантазий, и их количество может быть в принципе сведено к нулю.

Аватара пользователя
гаер*
Сообщения: 2438
Зарегистрирован: Пн июл 12, 2010 5:01 pm

Re: Поговорим немного о физике

Сообщение гаер* » Сб авг 25, 2012 2:41 pm

Шаляпин А.Л. писал(а):«Заряженный» электрон означает примерно то же самое, что и влажная молекула воды. Здесь допускается явная логическая ошибка, когда макроскопическое свойство вещества переносят на отдельную микрочастицу.
А ведь верно, чёрт побери!

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Вс авг 26, 2012 2:46 pm

СОМНИТЕЛЬНЫЕ «ПОДВИГИ» В СОВРЕМЕННОЙ КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ ВОПРЕКИ ПОДХОДУ УМОВА

Полный текст - http://osh9.narod.ru/cl/um3.htm

И к чему же привела недооценка теоретических работ Умова в фундаментальной физике? Да, ни к чему хорошему. С вектором Умова-Пойнтинга в электромагнетизме – в этой самой хорошо проверенной теории (по Р. Фейнману) и которая должна функционировать как очень хорошие точные часы (по А.Л. Шаляпину) возникает порой полная неразбериха. Мало того, что про Умова стали попросту забывать и называть этот вектор просто вектором Пойнтинга. Но этого еще мало. Вектор Умова-Пойнтинга стали пристраивать куда угодно и даже к постоянным электрическим и магнитным полям (авт.).

Так, автор учебника "Электричество" С.Г. Калашников [1] приходит к совершенно диковинным выводам. Оказывается, что электрическая энергия в провод поступает не от источника тока или напряжения, не из сетевой розетки 220 в, а неведомо откуда - с боковых поверхностей электрического провода, куда эту энергию мы вовсе и не заводили (авт.). Ту же самую печальную картину мы наблюдаем в Курсе общей физики И.В. Савельева (т. 2) [2] и даже у знаменитого Р. Фейнмана в его лекциях по классической электродинамике (вып. 6) [3]. Правда, в отличие от всех других авторов, Фейнман выражает крайнее недоумение данной сложившейся ситуацией.

А ведь вектор Умова-Пойнтинга, по его точному определению, относится только к поперечным электромагнитным волнам, т.е. как частный случай вектора Умова. С другой стороны, вектор Умова характеризует потоки любой волновой, тепловой и других видов энергии.

Теперь, в начале ХХI века, даже страшно подумать о том, что все физики со времен Максвелла и до нашего времени упустили самый "малый пустячок" в электромагнетизме – в этой самой хорошо проверенной теории (по Фейнману). Этот "пустячок" заключается в том, что в электрическом проводе или в плоском вакуумном конденсаторе электрическая энергия передается не фотонами, тем более - не "виртуальными фотонами", и не вектором Умова-Пойнтинга, а самым обычным вектором Умова, т.е. продольными электрическими волнами [4]. Более того, эти самые продольные электрические волны, промодулированные по амплитуде, все пытаются представить как "токи смещения" Максвелла, хотя тот и не настаивал на реальном существовании подобных токов (авт.).
трения.

А далеко ли ушли от этих фантазий некоторые современные теоретики, не понявшие механизмов функционирования электромагнитных силовых полей? В «квазисовременной» абстрактной физике пошли еще дальше, объявив электрическое и магнитное поле самостоятельными объектами в природе, которые не нуждаются в материальном носителе, т.е. эфире (авт.). Поскольку фундаментальные механизмы электромагнитных явлений до последнего времени были не поняты, то в «квазисовременной» абстрактной физике полностью отрицалось и фундаментальное значение теоретических выводов Умова по теории превращения энергии из одного вида в другой (например, из кинетической энергии в потенциальную энергию и обратно с участием физического вакуума-эфира, - авт.).

Таким образом, именно Умов изложил очень ценную идею об универсальности всех силовых взаимодействий в природе (авт.).

Это как раз мы и наблюдаем в «квазисовременных» абстрактных теориях, где многие ученые в отчаянных попытках хоть как-то понять процессы, происходящие в силовых полях, придумывают все новые и новые абстрактные математические модели, порой очень далекие как от здравого подхода, так и от реальности, для объяснения взаимодействия частиц и полей (авт.).


Литература


1. Калашников С.Г. Электричество. Издание пятое, исправленное и дополненное. М.: Наука, 1985, с. 524-525.

2. Савельев И.В. Курс общей физики. Т. 2. Электричество и магнетизм. Волны. Оптика. – М.: Наука, 1988. C. 309.

3. Фейнман Р., Лэйтон Р., Сэндс М. Фейнмановские лекции по физике. Электродинамика. – М.: Мир, 1977. Вып. 6. С. 296-299.

4. Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Второе издание, переработанное и дополненное. Екатеринбург, Изд-во Учебно-метод. Центр УПИ, 2006, 490 с.

5. Умов Н.А. Теория простых сред и ее приложение к выводу основных законов электростатических и электродинамических взаимодействий. Одесса, т. 9, 1873.

6. Умов Н.А. Теория взаимодействий на расстояниях конечных и ее приложение к выводу электростатических и электродинамических законов. М., 1873. См. также «Математический сборник», 1872, т. 6.

7. Umov N.A. Ein Theorem über die Wechselwirkungen in Endlichen Entfernunden. (Теорема относительно взаимодействий на расстояниях конечных). Zeitschrift für Mathematik und Physik. Bd. 19, 1874, H. 2. § 12.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Пн авг 27, 2012 7:50 am

О НЕКОТОРЫХ НЕТОЧНОСТЯХ В ОЧЕНЬ ТОЧНОЙ НАУКЕ КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ

Полный текст - http://osh9.narod.ru/cl/nek.htm

В данной работе затронуты вполне очевидные вопросы, которые очень часто встречаются в такой точной науке как классическая электродинамика. Статью можно было бы озаглавить и так: “Как так случилось, что все вместе очень дружно не заметили обычных продольных электрических волн в вакууме в рамках самой обычной классической электродинамики?

А теперь начнем все по порядку и в качестве образца возьмем типичный учебник И.В. Савельева «Курс общей физики», т. 2 [1], который отличается достаточно упорядоченным изложением материала.
За редким исключением, материал по электромагнетизму изложен примерно так же и в других учебниках для вузов. Поэтому сделанные здесь замечания совершенно не относятся лично к автору данного учебника, а скорее всего, касаются уровня понимания электромагнитных явлений современными физиками. И так, читаем (стр. 302).
«В главе IХ мы выяснили, что переменное электрическое поле порождает магнитное, которое, вообще говоря, тоже оказывается переменным. Это переменное магнитное поле порождает электрическое и т.д. Таким образом, если возбудить с помощью колеблющихся зарядов переменное электромагнитное поле, то в окружающем заряды пространстве возникнет последовательность взаимных превращений электрического и магнитного полей, распространяющихся от точки. Этот процесс будет периодическим во времени и в пространстве и, следовательно, представляет собой волну».

Получается так, что, еще совершенно не зная механизмов формирования силовых полей, уже утверждается, что переменное электрическое поле может породить магнитное поле (при этом обязательно – переменное) и наоборот.
А вот, в лекциях у Фейнмана [2] такого взаимного превращения полей вообще не просматривается.
В лекциях Фейнмана (вып. 6) достаточно последовательно показано, что причиной возникновения переменного электрического и магнитного полей является движущийся и ускоряющийся «точечный» заряд, т.е. самый обычный электрон. И данные силовые поля зарождаются одновременно, синфазно и синхронно с ускорением электрона, разумеется, с учетом запаздывания рассеянных движущимся электроном волн вакуума.

Одновременно с появлением продольной электрической волны между пластинами конденсатора здесь же образуется аксиальное магнитное поле, вызванное протеканием тока на подводящем проводнике к конденсатору.
Для данного случая (вакуумного промежутка между пластинами конденсатора) подойдет следующее уравнение Максвелла:

rot H = (ε0 /c) d E / d t (1)

Наблюдать прохождение продольной электрической волны достаточно легко в обычном проводнике, если подать на его вход короткий электрический импульс. Для измерения времени прохождения волны по проводнику нужно иметь достаточно высокочастотный осциллограф и широкополосный импульсный усилитель.

Литература

1. Савельев И.В. Курс общей физики. Электричество и магнетизм. Волны. Оптика. М.: Наука, 1982. T.2.
2. Фейнман Р., Лэйтон Р., Сэндс М. Фейнмановские лекции по физике. Электродинамика. М.: Мир, 1977. Вып. 6.
3. Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Екатеринбург. Изд-во УМЦ УПИ, 2006. 490 с.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Вт авг 28, 2012 7:42 am

ПРОДОЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ВОЛНЫ
Полный текст - http://s1836.land.ru/cl/prod.htm

Беседа о продольных электрических волнах у подавляющего большинства физиков и радистов вызывает очень большое недоумение, поскольку этот вопрос в учебной литературе, практически, не рассмотрен.

Эти волны выпали из рассмотрения по самой простой причине: с их помощью невозможно передавать сигналы на большое расстояние из-за их быстрого затухания с расстоянием.
Однако в ближней зоне излучателя продольные электрические волны всегда присутствуют как обычные волны, как волновые процессы в среде.

Все это достаточно подробно рассмотрено в классической электродинамике. Лишь поперечная модуляция продольных волн может обеспечить дальнюю связь.

А ведь именно эти продольные волны и составляют основу классической электродинамики, поскольку именно с этих волн начинается формирование основных силовых полей, как кулоновского, так и магнитного поля.



РЕЗЮМЕ

В теории Максвелла-Лоренца электрический вектор Е есть всегда волна в любом месте и в любом виде, поскольку электрическое поле всегда запаздывает.

1. Именно с помощью продольных кулоновских волн каждый электрон поставляет энергию в каждую точку поля, где всегда может совершаться механическая работа над частицами. Закон сохранения полной энергии еще нигде не нарушался.

2. Кулоновское поле является запаздывающим полем, т.е. распространяется не мгновенно, а постепенно со скоростью света. А это и есть по определению волновой процесс.

3. То, что это продольные волны, я думаю, не нужно и убеждать. Достаточно нанести вектора скорости распространения волн и силы.

4. У нас уже знают, что продольные волны могут образовывать резонансы в замкнутых резонаторах СВЧ.

5. Продольные волны свободно проходят через плоский конденсатор и могут образовать резонансные моды между обкладками конденсатора.

6. В обычном проводе электрический сигнал передается именно этими продольными волнами от одного электрона к другому. В учебниках этот вопрос почти не освещен.

7. Продольные электромагнитные волны широко
используются в науке и технике. В учебниках по физике вы не найдете о них ничего - как будто их и нет в природе.

Многие не верят в существование продольных электромагнитных волн, однако имеется большое количество статей про эти волны. Привожу лишь небольшую часть.

1. Богданов В.П., Протопопов А.А., Яшин А.А. Продольные электромагнитные волны: биологические, физические и энергетические аспекты // Вестник новых мед. технологий. - 1999. - Т.VI, N 3-4. - С.41-44. - Библиогр.: 16 назв.

2. Исследование методом соматической рекомбинации дрозофил, подвергшихся воздействию продольных электромагнитных волн / В.П.Богданов, В.В.Воронов, Р.А.Сидоров, А.А.Яшин // Вестник новых мед. технологий. - 1995. - Т.2, N 3-4. - С.6-9.

3. Концептуальные основы электроники на продольных электромагнитных волнах / Нефедов Е.И., Протопопов А.А., Семенцов А.Н., Яшин А.А. // Междунар. конф. "100-летие начала использования электромагнитных волн для передачи сообщений и зарождения радиотехники": Тез. докл. Ч.2. - М., 1995. - С.293-295. - Библиогр.: 8 назв.

4. Нефедов Е.И., Протопопов А.А., Яшин А.А. Параметрические характеристики канала информации на продольных электромагнитных волнах // Электродинамика и техника СВЧ и КВЧ. - 1995. - Т.3, N 4. - С.79-88. - Библиогр.: 20 назв.

5. Опытные исследования энергоинформационных взаимодействий излучений генератора продольных электромагнитных волн с водой / Абдулкеримов С.А., Богданов В.П., Годин С.М. и др. // Электродинамика и техника СВЧ и КВЧ. - 2000. - Т.8, N 3-4(2. - С.124-126. - Библиогр.: 3 назв.

Шаляпин А.Л.
Сообщения: 99
Зарегистрирован: Сб авг 04, 2012 10:36 am

Re: Поговорим немного о физике

Сообщение Шаляпин А.Л. » Вт авг 28, 2012 3:07 pm

НАБЛЮДЕНИЕ ПРОДОЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ВОЛН

Полный текст - http://s1836.land.ru/cl/nab/nab.htm

EUROPHYSICS LETTERS 15 August 2002
Europhys. Lett., 59 (4), pp. 514-520 (2002) Наблюдение скалярных продольных электромагнитных волн
C. MONSTEIN1 и J. P. WESLEY2
1 - ETHZ, Институт Астрономии - Scheuchzerstrasse 7, CH-8092 Z¨urich, Швейцарии
2 -Weiherdammstrasse 24, D-78176 Блумберг, Германия
(получено 18 февраля 2002; принято в окончательной форме 14 мая 2002)
PACS. 41.20.-q - Прикладной классический электромагнетизм.
PACS. 41.20. Jb - Электромагнитное распространение волн; Резюме. - Теоретически должен существовать скалярный силовой потенциал Φ волны с продольным электрическим полем E в направлении распространения этой волны. Центрально питаемая шаровая антенна, 6 см диаметром, производя пульсирующий сферический заряд передатчика на частоте 433.59 МГЦ, произвела такую волну, которая была обнаружена идентичной приемной шаровой антенной. Продольность волны E демонстрировалась путем помещения кубического набора 9-ти проводников полудлины волны, которые поглощали волну, когда проводники были параллельны (но не когда перпендикулярны) к направлению распространения волн. Сигнал от шаровой антенны передатчика, помещенной в 4.0 м. над землей и приемника – в 4.4 м. над землей, был измерен как функция расстояния, приводя к удовлетворительному согласию с теорией, включая 2 предсказанных теорией минимума интерференции, вызванные источником изображения, наведенным в Земле. Только реальные волны могут привести к такой интерференции и могут быть отражены от поверхности Земли, и изменяться как обратный квадрат расстояния. Теория. - Из закона Кулона, скалярный силовой потенциал Φ есть решение уравнения Лапласа. Вводя запаздывание по времени, Φ становится решением неоднородного волнового уравнения [1-3],

Закрыто

Вернуться в «антихимия»

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и 8 гостей