новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

Новости химической науки > Дефекты кристаллической решетки и нанотрубки


25.4.2010
эту статью еще не оценивали Подписаться на RSS

У современных специалистов в области нанотехнологий уже почти нет проблем в получении широкого круга наноразмерных объектов – нанопроводов, нанотрубок и даже «нано-деревьев». Однако, в настоящее время еще нет системы теоретических обобщений, позволяющей точно предсказать, как образуются эти объекты.



Схема реактора непрерывного потока (сверху), с помощью которого изучалось образование наноструктур и диаграммы сверхнасыщения (снизу). (Рисунок Science, 2010; 328 (5977): 476)

Исследовательская группа Сонг Хина (Song Jin) из Университета Висконсина-Мэдисона продемонстрировали, что простой дефект кристаллической решетки, известный как дислокация Бюргерса (винтовая дислокация - screw dislocation) направляет рост полой нанотрубки из оксида цинка.

Результаты открытия важны, так как они могут пролить свет на механизм образования наноразмерных объектов, что важно для создания теоретического фундамента нанонауки и нанотехнологии. Хин полагает, что сформулированные в ходе его исследования закономерности роста нанопроводов или нанотрубок в отсутствие металлических катализаторов могут быть применимы ко многим другим материалам.

Наноматериалы находят широкое применение в различных областях, таких как электроника, устройства для преобразования солнечной энергии в электрическую, лазерной технологии, химических и биологических сенсорах. Дальнейшая работа над совершенствованием теоретических обобщений особенностей формирования наночастиц может привести к разработке новых методов массового производства наноразмерных частиц из различных материалов.

По словам Хина и его коллег, образование наноразмерных объектов зависит от того, что называют дислокацией Бюргерса. Дислокации представляют собой основы для роста и характеристики всех кристаллических материалов. Дислокация Бюргерса или винтовая дислокация способствует образованию спиральных структур на ровной грани кристалла. Ранее Хин с коллегами продемонстрировал, что винтовая дислокация способствует образованию одномерных нанопроводов.

Ключевым моментом, объясняющим влияние дефектов на образование наноструктур является то, что спиральные дислокации вызывают напряжение, и растущий двумерный кристалл «изгибается», приводя к формированию структуры с полостью. Джин поясняет, что значительное напряжение, вызванное винтовой дислокацией, может приводить к самопроизвольному образованию нанотрубок.

Явление, описанное в новой работе исследователей из Висконсина, существенно отличается от устоявшихся представлений о механизме образования полых наноструктур и методах их получения. В настоящее время для получения полых нанообъектов, как правило, применяют шаблоны или диффузионные процессы, способствующие превращению нанообъектов одного типа в другие.

Исследователи из Университета Висконсина-Мэдисона надеются, что доработка теории сможет привести к созданию новых промышленных дешевых методов получения наноматериалов с широким спектром полезных свойств.

Источник: Science, 2010; 328 (5977): 476 DOI: 10.1126/science.1182977

метки статьи: #аналитическая химия, #нанотехнологии, #новые материалы, #физическая химия

оценить статью: 12345
Перепечатка статьи разрешается при условии размещения активной гиперссылки на ChemPort.Ru
Комментарии к статье:
Ваше имя
Ваш e-mail, чтобы следить за обсуждением
   
Комментарий

Символ пятого P-элемента в табл. Менделеева
(латиницей, одной заглавной буквой):
   
 


Вы читаете текст статьи "Дефекты кристаллической решетки и нанотрубки"
Перепечатка статьи разрешается при условии размещения активной гиперссылки на ChemPort.Ru

Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXIX
Контактная информация