новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

Новости химической науки > Пойманные бактерии приводят в движение микронасосы


3.11.2015
средняя оценка статьи - 5 (2 оценок) Подписаться на RSS

Перемещение материала в микроскопическом мире представляет собой непростую задачу, для решения которой требуется выполнить много условий. Обычно для такого перемещения применяются макроскопические насосы, однако их конструкционные схемы не всегда могут быть миниатюризованы.

В новой работе Хепен Жан (Hepeng Zhang) с коллегами из Университета Цзяо Тон в Шанхае попытался решить задачу перемещения микроколичеств жидкости, используя для этого коренных обитателей микромира – подвижных бактерий. Преимущество такого решения заключается не только в том, что водные растворы являются для этих микроорганизмов естественной средой обитания, но и тем, что эффективность в преобразовании энергии, в соответствии с оценками, выше, чем у существующих в настоящее время микроскопических моторов, созданных человеком.

Бактериальные жгутики представляют собой гибкие структуры, которые обеспечивают поступательное движение бактерий. Когда бактерия перемещается в жидкости, ее жгутики действуют подобно тому, как наши конечности позволяют плавать нам в бассейне или водоеме. Поэтому, если представить себе, большое количество связанных бактерий, или большое количество пловцов связанных так, чтобы ничто не мешало движению их жгутиков или конечностей, можно предположить, что такая система создаст достаточную для перемещения большой нагрузки силу.

Жан отмечает, что первоначально исследователи из его группы заметили, что бактерии, закрепленные к покровному стеклу, двигая жгутиками, могут обеспечивать течение жидкости, это наблюдение привело к идее использовать иммобилизованные микроорганизмы в качестве насосов. Исходя из того, что поток могла создавать одна бактерия, был сделан вывод о том, что бактерии с ограничением степеней свободы могут служить в качестве строительных блоков для получения более сложных систем течения. По словам Жана, методом проб и ошибок ему и его коллегам удалось подобрать способы организовать бактерии в такие микроструктурированные насосы.



Пять бактерий с ограниченными степенями свободы создают поток жидкости, интенсивность течения которого можно измерить. (Рисунок из Lab Chip, 2015, DOI: 10.1039/c5lc01093d)

Самым сложным для «укрощения бактерий» было создание микроструктур соответствующей формы. В конечном итоге они были изготовлены с помощью трехмерного принтера, в котором использовалась безопасная для бактерий смола, позволяющая получать требуемую структуру шаг за шагом, структурный блок за структурным блоком. Каждая такая структура содержит большое количество микроразмерных полостей, если бактерия попадает в полость, неспособность микроорганизма «плыть задним ходом» превращает полость в ловушку для «микрогребца».

Специалист по движению микроорганизмов из Университета Висконсина Савьеро Спаньоли (Saverio Spagnolie) говорит о полостях микроструктуры как о «крошечных крытых гаражах», отмечая, что новая работа позволяет лучше контролировать поток, создаваемый жгутиками бактерий.

Источник: Lab Chip, 2015, DOI: 10.1039/c5lc01093d

метки статьи: #биохимия, #молекулярная биология, #нанотехнологии, #химическая технология

оценить статью: 12345
Перепечатка статьи разрешается при условии размещения активной гиперссылки на ChemPort.Ru
Комментарии к статье:
Ваше имя
Ваш e-mail, чтобы следить за обсуждением
   
Комментарий

Символ пятого P-элемента в табл. Менделеева
(латиницей, одной заглавной буквой):
   
 


Вы читаете текст статьи "Пойманные бактерии приводят в движение микронасосы"
Перепечатка статьи разрешается при условии размещения активной гиперссылки на ChemPort.Ru

Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVIII
Контактная информация