новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
тендеры / аналитика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы

расширенный поиск
каталог ресурсов
электронный справочник
авторефераты / книги
форум химиков
подписка / опросы
проекты / о нас

реклама на сайте
контакты
Магазин химических реактивов
поиск
   

главная > справочник > химическая энциклопедия:

НЕЖEСТКИЕ МОЛЕКУЛЫ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

НЕЖEСТКИЕ МОЛЕКУЛЫ, молекулы, у которых малые изменения энергии или пространств. расположения атомных ядер (геом. конфигурации) приводят к существенным, подчас качеств., изменениям свойств. Нежесткость присуща, как правило, лишь отдельным состояниям молекулы, тогда как при переходе к др. состояниям она отсутствует.

Понятие "нежeсткие молекулы" возникло в связи с тем, что квантовомех. описание мол. систем проводится в рамках адиабатического приближения традиционно, на основе след. модели: движение электронов и ядер адиабатически разделяется; поведение каждого из электронов определяется в одноконфигурац. приближении соответствующей мол. орбиталью (напр., в приближении самосогласованного поля; см. Молекулярных орбиталей методы); для представления движения ядер их рассматривают как систему связанных гармонич. осцилляторов (или ангармонич. осцилляторов Морса), совершающих малые колебания вблизи положения равновесия; вся молекула к тому же вращается как единое жесткое целое (жесткий ротатор). Если эта модель приемлема для описания молекулы и все отклонения от нее при переходе к точному описанию м. б. учтены как малые поправки (малые возмущения), молекулу наз. ж е с т к о й. Для "жесткой" модели характерна единств. равновесная ядерная конфигурация, которой отвечает четко выраженный минимум потенц. энергии, и малые (по сравнению с межъядерными расстояниями) амплитуды колебаний ядер. Если молекула обладает неск. устойчивыми равновесными ядерными конфигурациями, жесткую модель применяют в тех случаях, когда энергия активации перехода между этими конфигурациями (потенц. барьер) превышает при обычных температурах ~100 кДж/моль.

Как правило, жесткая модель удовлетворительно описывает лишь низшие колебательно-вращат. энергетич. уровни осн. электронного состояния молекул большинства хим. соединений. Симметрия жестких молекул определяется точечной группой симметрии равновесной ядерной конфигурации, по неприводимым представлениям которой классифицируются состояния таких молекул. Физ. методы (газовая электронография. ЯМР и др.) позволяют определять точечную группу симметрии и параметры равновесной конфигурации. К жестким молекулам относят как простые молекулы, например СО2, ВСl3, SO3, CH4, SF6, так и некоторые сложные мол. системы, например бензол. адамантан. карбораны. Нарушения применимости жесткой модели наз. э ф ф е кт а м и н е ж е с т к о с т и, а молекула в соответствующем состоянии считается н е ж е с т к о й. Следует отметить, что повышение точности эксперим. исследований приводит, как правило, к расширению числа нежeсткие молекулы Иногда выделяют и промежут. случаи-т. наз. полужесткие молекулы. нежeсткие молекулы могут обладать неск. равновесными ядерными конфигурациями. Различают структурно-нежесткие и электронно-нежесткие молекулы, в зависимости от того, для какой из подсистем молекулы - ядер или электронов-существенно отклонение от жесткой модели. Для структурно-нежестких молекул существенно, что колебания ядер по форме отличаются от гармонических либо характерных для ангармонич. осцилляторов Морса; в частности, амплитуды колебаний велики и сравнимы по порядку величины с длинами связей. Если при малых изменениях равновесной геом. конфигурации ядер молекулы происходит резкая перестройка электронной конфигурации, говорят об электронной нежесткости.

Структурно-нежесткие молекулы характеризуются тем, что потенциал, поле которого определяет колебания ядер, слабо меняется вдоль одной или неск. пространств. координат. Движения по этим координатам наз. нежесткими движениями. Колебания ядер происходят с большой амплитудой, а осн. частота колебаний вдоль "нежесткой" координаты обычно гораздо меньше частот "жестких" валентных и деформац. колебаний и может приближаться даже к характерным величинам вращат. частот. При переходе от одних колебат. состояний к другим заметно меняется средняя геом. конфигурация молекулы. Достаточно малые внеш. воздействия, обусловленные, например, окружением молекулы в конденсир. фазе, заметно меняют вероятность распределения ядер в разл. областях пространства. Жесткие молекулы, наоборот, сохраняют свою геом. конфигурацию при таких воздействиях.

Отдельные классы структурно-нежестких молекул были известны давно; например, молекулы со слабо заторможенным внутр. вращением (см. Внутреннее вращение молекул), а также молекулы, изомеры которых переходят друг в друга при тепловом движении, т. е. при энергиях возбуждения порядка неск. RT( 2,5 кДж/моль при 300 К) (T-абс. температура, R-газовая постоянная), так что равновесие между такими изомерами (конформерами) устанавливается быстро даже при сравнительно низких температурах. Так, в молекуле этана барьер внутр. вращения равен ~ 12 кДж/моль, а в молекуле метил-германа - всего лишь ~5кДж/моль. При таутомерных превращ. барьер также подчас настолько мал, что равновесие между таутомерами устанавливается очень быстро и выделить их в изолир. состоянии оказывается невозможным (см. Таутомерия).

нежeсткие молекулы являются соли кислородсодержащих кислот и комплексные галогениды металлов, например RbNO3, KClO4, LiAlF4 и т. п. Так, у молекул галогенидов в газовой фазе имеется, как правило, жесткий остов типа AlF4, вокруг которого относительно свободно может перемещаться остаток, например Li. Хим. связь в таких соед. по характеру очень близка к ионной. На поверхности потенциальной энергии (ППЭ) того или иного электронного состояния этих молекул имеется обычно неск. эквивалентных (или почти эквивалентных) минимумов, отделенных друг от друга невысокими барьерами; так, у LiAlF4 имеется 4 минимума, отвечающих расположению атома Li над гранями тетраэдра AlF4. Такого рода молекулы наз. политопными. К числу политопных молекул относят и молекулы типа PF5, на ППЭ которой эквивалентные минимумы отвечают конфигурации треугольной бипирамиды симметрии D3h. Эти конфигурации при определенных колебаниях переходят друг в друга: молекула как бы поворачивается (с сохранением вращат. момента импульса) от одной конфигурации к другой, эквивалентной первой. Такое колебат. движение наз. псевдовращениeм Берри, а молекулы, у которых оно проявляется, иногда наз. стереохимически нежесткими (см. Политопные перегруппировки). К движениям с большой амплитудой и переходами между эквивалентными минимумами относится также инверсия пирамидальных молекул, например, аммиака и аминов.

У молекул типа LiNC нет эквивалентных минимумов, однако тот желоб на ППЭ, вдоль которого совершает нежесткие колебания ядро Li, очень пологий: вдоль этого желоба конфигурации на ППЭ отвечает абс. минимум; кроме того, имеются неглубокие минимумы для Т-образной конфигурации и для почти линейной конфигурации LiCN на ~3,1 и 9,7 кДж/моль выше абс. минимума соответственно. Частота деформац. колебания составляет вблизи конфигурации LiNC ок. 100 см-1, т.е. 1,2 кДж/моль. По мере увеличения колебат. возбуждения молекула меняет свою среднюю геом. конфигурацию: если в осн. состоянии это линейная конфигурация LiNC, то при переходе в более высокие колебат. состояния конфигурация становится все более изогнутой. У молекулы RbCN минимум на ППЭ отвечает треугольной конфигурации, тогда как линейным конфигурациям RbCN и RbNC (с небольшим локальным минимумом) отвечают более высокие энергии (на 500 и 2000 см-1 соотв.).

Если движения ядер с большими амплитудами происходят в области одного минимума на ППЭ, молекулу наз. л о к а л ь н о-н е ж е с т к о й. Если же при таких движениях происходят перемещения атомов или групп атомов из одной области пространства в другую или даже перестройка скелета молекулы (напр., при таутомерных превращ.), молекулы наз. г л о б а л ь н о-н е ж е с т к и м и. У глобально-нежестких молекул на ППЭ обычно имеется неск. близких по энергии минимумов, разделенных низкими (порядка энергии теплового движения) потенц. барьерами.

Если в некотором нестационарном состоянии молекулы волновая ф-ция, описывающая движение ядер, локализована у одного из минимумов ППЭ, то при послед. эволюции этого состояния во времени рано или поздно возникает состояние, также нестационарное, в котором волновая ф-ция будет локализована у др. минимума. Время, которое система проводит в одном из минимумов (или время, за которое происходит такой переход), обычно наз. временем жизни в этом минимуме. Чем выше барьеры между минимумами и чем они шире, тем больше время жизни мол. системы в соответствующем минимуме ППЭ. У структурно-нежестких молекул времена жизни в отдельных минимумах, отвечающих нежестким движениям, обычно малы. Так, у PF5 частота перехода из одной конфигурации симметрии D3h в другую, ей эквивалентную, равна 105 Гц, т. е. время жизни в одном из минимумов составляет 10-5 с. Поэтому метод ЯМР, характеристич. время измерений которого составляет от 10-1 до 10-9 с, не позволяет различить неэквивалентные аксиальные и экваториальные атомы F, тогда как электро-нографич. эксперимент с характеристич. временем измерений порядка 10-20 с допускает обнаружение их различий: равновесное расстояние между ядрами Re (Р — Faкc) = 0,1577 нм, Re(P — Fэкв) = 0,1534 нм. Малые времена жизни характерны и для оптич. изомеров хиральных аминов, которые при комнатной температуре оптически неактивны именно из-за быстрого превращ. одного изомера в другой и обратно (каждый из оптич. изомеров также отвечает нестационарному состоянию с большим или меньшим временем жизни).

Симметрия структурно-нежестких молекул описывается т. наз. перестановочно-инверсионной группой, включающей группу перестановок тождеств. ядер и группу инверсии, состоящую из тождеств. операции и операции инверсии. Число элементов перестановочно-инверсионной группы обычно весьма велико, однако если в молекуле выделить жесткие фрагменты, например метильные группы, аминогруппы, то это число значительно сокращается.

Электронно-нежесткие молекулы отличаются относительно резкими изменениями электронных свойств вблизи тех геом. конфигураций ядер, где происходит переход от одних электронных конфигураций, доминирующих в волновой ф-ции молекулы, к другим, т.е. происходит существ. изменение электронного распределения. Так, в основном состоянии у двухатомных молекул типа LiF, AlO и др. для равновесной конфигурации и вблизи нее характерен ионный тип связи: Li+ F-, A12+ O2- и т.п. Однако при увеличении межъядерного расстояния R, подчас достаточно близко от равновесного расстояния Re, электронная конфигурация меняется, например, с переходом к ковалентному типу связи и в конечном итоге-с переходом к диссоциац. пределу, отвечающему взаимод. двух нейтральных подсистем Li + F, Al + О и т. д. В тех областях пространства, где происходит такая смена доминирующей электронной конфигурации, наблюдается резкое изменение зависимости от R электронного диполь-ного момента me(R), поляризуемости a(R), их производных по R и др. электронных свойств (см. рис.). Это приводит и к изменениям свойств, усредненных по колебаниям ядер, например к резким изменениям средних для каждого колебат. состояния дипольного момента, поляризуемости, а также вероятностей квантовых переходов. Так, в спектрах могут "пропадать" отдельные линии и полосы из-за очень малых величин соответствующих вероятностей переходов, поскольку эти вероятности перехода пропорциональны квадрату модуля матричных элементов дипольного момента перехода (см. Квантовые переходы). У мн. молекул существует неск. областей перестройки доминирующей электронной конфигурации, особенно в возбужденных электронных состояниях, что приводит к значит. усложнению поведения молекулы в таких состояниях, особенно при хим. превращениях.

Зависимость дипольного момента m (в дебаях D) молекулы LiF от межъядерного расстояния R для основного состояния и первого возбужденного состояния того же типа симметрии.

С электронной нежесткостью часто связаны Яна - Теллера эффекты, когда высокосимметричная конфигурация А ядер, приводящая к вырожденному электронному состоянию, оказывается конфигурацией локального максимума на ППЭ молекулы, тогда как минимумам на ППЭ отвечают конфигурации ядер В1, В2, ..., Вn с более низкой симметрией, переходящие друг в друга при операциях симметрии конфигурации А, причем в этих минимумах электронные конфигурации уже иные, чем в исходном вырожденном состоянии. Такие минимумы к тому же часто бывают разделены невысокими барьерами, что создает благоприятные условия для проявления структурной нежесткости у соответствующих молекул.

Нежесткость молекул проявляется и в состояниях сильного вращат. возбуждения, особенно у высокосимметричных молекул, когда качественно изменяется распределение по энергии вращат. состояний. Так, у молекул типа сферич. волчка (СН4, GeH4 и т. п.) при больших значениях вращат. квантового числа J (порядка 40-100) энергетич. спектр вращат. уровней имеет "кластерную" структуру: он состоит из системы "кластеров", включающих по 8 очень близко расположенных уровней (на расстоянии 10-4 см-1 и менее), тогда как сами "кластеры" удалены друг от друга на значительно большие расстояния (порядка 10-1 см-1 и более). При некоторых значениях J, зависящих от конкретной молекулы, кластерная структура (а вместе с ней и структура вращат. спектров) резко меняется: происходит, например, перестройка и переход к кластерам, включающим по 6 уровней ("вращат. фазовые переходы"). Такого типа нежесткость часто наз. вращательной.

Нежесткость отдельных видов движения в той или иной степени присуща всем молекулам, начиная с Н2 (в возбужденных электронных состояниях) и кончая сложными белковыми молекулами, у которых одновременно проявляются разл. типы нежесткости: почти своб. вращение вокруг отдельных связей, слабые изменения расстояний между отдельными фрагментами, допускающие, например, интеркаляцию др. молекул, в частности антибиотиков и т. д. Проявления нежесткости молекул наблюдаются и на макроскопич. уровне, например в виде необычной температурной зависимости теплоемкости или в виде необычно высоких значений энтропии, в т.ч. энтропии хим. реакций с участием нежeсткие молекулы В осн. эти проявления связаны со структурной нежесткостью, однако при хим. реакциях весьма существенна и электронная нежесткость.

Лит.: Жилинский Б. И., Истомин В. А., Степанов Н.Ф., Колебательно-вращательные состояния нежестких молекул, в сб.: Современные проблемы физической химии, т. 11, М., 1979, с. 259-304; Пирсон Р., Правила симметрии в химических реакциях, пер. с англ., М., 1979; Маркин О.П., Болдырев А. И., в кн.: Итоги науки и техники, сер. Неорганическая химия, т. 8, М., 1980; Байкер Ф. Р., Симметрия молекул и молекулярная спектроскопия, пер. с англ., М., 1981; Symmetries and properties of non-rigid molecules, ed. by J. Maruani, J. Serre, Amst. 1983. Н. Ф. Степанов.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация