новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
тендеры / аналитика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы

расширенный поиск
каталог ресурсов
электронный справочник
авторефераты / книги
форум химиков
подписка / опросы
проекты / о нас

реклама на сайте
контакты
Магазин химических реактивов
поиск
   

главная > справочник > химическая энциклопедия:

Кондуктометрия


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Кондуктометрия (от англ, conductivity - электропроводность и греч. metreo - измеряю), совокупность электрохимических методов анализа, основанных на измерении электропроводности жидких электролитов, которая пропорциональна их концентрации. Достоинства кондуктометрия: высокая чувствительность (нижняя граница определяемых концентраций ~10-4-10-5 М), достаточно высокая точность (относительная погрешность определения 0,1-2%), простота методик, доступность аппаратуры, возможность исследования окрашенных и мутных растворов, а также автоматизации анализа. Методы кондуктометрии бывают постояннотоковые и переменнотоковые последние могут быть низкочастотными (частота тока <105 Гц) или высокочастотными (>105 Гц). Различают контактную и бесконтактную кондуктометрия в зависимости от наличия или отсутствия контакта между электролитом и входными цепями измерительного прибора. Наиболее распространены контактный низкочастотный и бесконтактный высокочастотный методы.

Контактные методы. Измерения проводят с помощью контактных ячеек (рис.1, а). При этом используют электроды из Pt, Ti, нержавеющей стали и др. Для измерения растворов с высокой концентрацией электролита (10-2-10-3 М) применяют платинированные электроды с развитой поверхностью.

Рис. 1. Кондуктометрические ячейки и их эквивалентные электрические схемы: a-контактная ячейка; б-емкостная ячейка; в-индуктивная ячейка; R-сопротивление электролита; С1-емкость двойного электрического слоя на межфазной границе электрод - электролит; С2-емкость раствора; С3-емкость конденсатора, образованного раствором, стенкой ячейки и внешним электродом; Zф-фарадеевский импеданс, связанный с протекающей на границе электрод-электролит электрохимической реакцией; L1 и L2-индуктивности соотв. электролита и катушки.

В прямой кондуктометри непосредственно определяют концентрацию электролита по х его раствора (если между этими величинами имеется линейная зависимость). Метод применяется главным образом для анализа разбавленных растворов. В случае концентрирированных растворов необходимо строить градуировочные графики. Определение веществ в присутствии других электролитов возможно, если концентрации последних постоянны. На методе прямой кондуктометрия основаны конструкции солемеров и др. кондуктометрических устройств, позволяющих определять олеум. а также различных соли в минеральной, речной и морской водах, физиологических жидкостях и др. Прямую кондуктометрию применяют при контроле регенерации ионитов, очистки воды, промывки осадков, при оценке качества вин, соков и других напитков, чистоты органических растворителей, газов, твердых солей, текстильных материалов, бумаги, зерна, почвы и т.д. Часто анализируемые образцы предварительно сжигают, а выделяющиеся газы поглощают подходящими растворами. По электропроводности поглотителей определяют количества газов (в частности, СО2, NO2, SO2), следовательно - содержание соответствующих элементов, например С, N, S, в металлах, сплавах и органических соединениях.

В косвенной кондуктометрия, позволяющей исследовать смеси электролитов, наряду с электропроводностью растворов измеряют рефракцию, вязкость, рН, плотность или др. величины. Например, при анализе промышленных нитрующих смесей, содержащих H2SO4, HNO3 и Н2О, дополнительно измеряют плотность. По совокупности всех экспериментальных данных определяют количеств, состав смеси.

Кондуктометрическое титрование (кондуктометрия) основано на изменении х раствора при химических реакциях, связанном с изменением концентрации ионов различной подвижности. Кондуктометрическое титрование проводят в водных, водно-органических и неводных средах. Кривые титрования, представляющие собой зависимость х от количества прибавленного реагента (титранта), имеют излом в точке эквивалентности. При титровании смесей электролитов число изломов равно числу определяемых компонентов, взаимодействующих с титрантом. Форма кривых может быть разной (рис. 2).

Кондуктометрическое титрование может быть основано на различных реакциях. Наиболее широко используются кислотно-основные взаимодействия. Так, разработаны методы определения в воде кислот и оснований с

Рис. 2. Кривые кондуктометрического титрования в контактной ячейке раствором NaOH: 1 - соляной кислоты; 2 - CH3COOH; 3 - смеси HCl+СН3СООН+(C2H5)3N.НCl+фенол.

рК[10, солей слабых кислот или оснований. При титровании сильными основаниями сильных или слабых кислот х до точки эквивалентности соответственно понижается (так высокоподвижные ионы Н+ заменяются менее подвижными катионами титранта) или увеличивается (в результате диссоциации соли). При избытке сильного основания после точки эквивалентности (резко увеличивается (рис. 2, кривые 1 и 2). При титровании солей (до точки эквивалентности сравнительно мало изменяется, титрование кондуктометрической подвижности заменяющих друг друга ионов близки. Поэтому возможен анализ смесей солей с кислотами или основаниями, содержащих от 2 до 5 компонентов (рис. 2, кривая 3). При кондуктометрическом титровании, основанном на комплексообразовании, катионы (напр., Fe3+ , Cu2+, Рb2+, РЗЭ) титруют этилендиаминтетраацетатом Na, а также тартрат-, оксалат-, цитрат-, цианид-ионами и др. Реакции осаждения применяют для кондуктометрического определения как анионов, так и катионов. Например, раствором AgNO3 оттитровывают Сl-, Вr-, I-, CN-; раствором Ва(ОСОСН3)2 или ВаСl2-SO2-, Сr42-; раствором Th(NO3)3-F-, SiF62-; раствором Na2SeO3-Mn2+, Co2+ . Методы кондуктометрического титрования, основанные на реакциях окисления-восстановления, используются редко.

При так называемом хронокондуктометрическом титровании раствор титранта подается в реакционный сосуд (электрохимическую ячейку) с постоянной скоростью, так что время титрования пропорционально кол-ву прибавленного титранта. Концентрации веществ определяют по кривым "электропроводность раствора - время титрования". Обычно осуществляется автоматич. запись кривых. Все определения, проводимые обычным кондуктометрия также, могут быть осуществлены хронокондуктометрически.

Контактные методы отличаются высокой точностью. Они применяются не только для хим. анализа, но и для изучения кинетики реакций, определения констант диссоциации (ассоциации) электролитов, растворимости осадков, коэффициентов диффузии и т.д.

Бесконтактные методы. Применяются для относительных измерений электропроводности, главным образом для высокочастотного титрования. Измерения проводят с применением емкостных (С-) или индуктивных (L-) ячеек, представляющих собой сосуды из диэлектрика, которые соответственно имеют с внеш. стороны не менее двух металлических электродов (рис. 1,б) или помещены в магнитном поле катушки индуктивности (рис. 1,в). Электроды С-ячейки или катушка индуктивности соединяются с высокочастотным генератором. Электропроводность электролита при токе высокой частоты обусловлена не только реальным перемещением зарядов, но в большей мере потерями электрической энергии в емкостной и индуктивных ячейках. Это отражается на реактивной составляющей X полного сопротивления (импеданса) цепи Z2 = R2 + X2, где R-активное сопротивление, X=XL-ХC, XL и ХC - соответствующее индуктивное и емкостное сопротивление цепи. Индуктивные ячейки используют обычно для измерения сравнительно высокой электропроводности, а емкостные - для измерения низкой электропроводности. Чувствительность измерения повышается в С-ячейках при использовании диэлектриков с высокой диэлектрической проницаемостью, уменьшении толщины стенок сосуда и увеличении площади электродов, а в L-ячейках - с увеличением объема пробы. Применяются также комбинированные LC-ячейки, RC- и RL-ячейки с повышенной чувствительностью, а также многозвенные ячейки с различным числом электродов, включенных в фазовращающие контуры автоколебательных генераторов. При высокочастотном титровании необходимо предварительно выбирать условия с учетом характеристической кривой ячейки, т.е. зависимости 1/XL или 1C от х (рис. 3). Чем больше интервал между значениями (:0 и (::, в котором эта зависимость линейна, тем удобнее ячейка для измерений. Кроме того, чувствительность измерений различна на различных участках характеристической кривой; например, в случае кривой 1 чувствительность наименьшая в максимуме и наибольшая в точках перегиба.

Рис. 3. Характеристич. кривые бесконтактных высокочастотных ячеек: 1,2,3 - зависимости обратных величин соотв. активной, емкостной и индуктивной составляющих Z от lg(.

Кривые высокочастотного титрования имеют минимум (как кривая 1 на рис. 2) или максимум, а также могут представлять собой М-образные кривые. Бесконтактные методы уступают контактным по точности, но превосходят их по чувствительности. Кроме того, из-за отсутствия взаимодействия материала электрода с исследуемой средой эти методы позволяют проводить измерения при высоких и низких температурах, в агрессивных средах, в замкнутых объемах. Они применяются для кислотно-основных титрований на фоне дифференцирующих растворителей (СН3СООН, ацетон, диоксан и др.), детектирования веществ в хроматографии, экспресс-анализа органических соединений, воздуха и промышленных газов, анализа хим. реактивов, контроля качества лекарственных средств в запаянных ампулах, для изучения комплексообразования, гидролиза, сольватации, фазовых переходов.

Лит.: Худякова Т. А., Крешков А. П., Теория и практика кондуктометрического и хронокондуктометрического анализа, М., 1976; Лопатин Б. А., Высокочастотное титрование с многозвенными ячейками, М., 1980; Грилихес М.С., Филановский Б. К., Контактная кондуктометрия, Л., 1980. Т. А. Худякова. Б. К. Филановский. М.С. Грилихес.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация