новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
тендеры / аналитика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы

расширенный поиск
каталог ресурсов
электронный справочник
авторефераты / книги
форум химиков
подписка / опросы
проекты / о нас

реклама на сайте
контакты
Магазин химических реактивов
поиск
   

главная > справочник > химическая энциклопедия:

Жидкость


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Жидкость, агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкие тела текучи, не обладают определенной формой, могут образовывать свободную поверхность и стремятся сохранить свой объем. На термодинамической диаграмме состояний однокомпонентного (чистого) вещества жидкости соответствует область между линиями кристаллизации и испарения. При давлениях и температурах выше критических значений рк и Тк по своим свойствам жидкость и газ не различаются.

Возможно существование термодинамически неустойчивой, так называемой метастабильной, жидкость, перегретой выше температуры кипения или переохлажденной ниже температуры застывания при данном давлении. Аморфные твердые тела (стекла) обычно рассматриваются как переохлажденные жидкости с очень малой текучестью. Многие вещества имеют промежуточное состояние между жидкостью и твердой кристаллической фазой, в котором вещество отличается от жидкости анизотропией свойств, а от кристаллов -текучестью.

В данной статье рассматриваются однокомпонентные (чистые) жидкости; о двух- и многокомпонентных жидкостях см. в ст. Растворы. Важнейшие свойства чистых жидкостей в состоянии термодинамического равновесия: плотность d, термический коэффициент объемного расширения aV, коэффициент изотермической сжимаемости bT, теплоемкости Ср и СV при постоянных давлении и объеме соответственно, энтальпия испарения DHисп, поверхностное натяжение g, диэлектрическая проницаемость e, магнитная восприимчивость c показатель преломления п. Процессы переноса в жидкость характеризуются коэффициентом вязкости h, теплопроводности l и самодиффузии D.

Свойства жидкости вдали от критической точки значительно слабее зависят от давления, чем от температуры. Это часто позволяет пренебречь различием в свойствах жидкость, измеренных при атмосферном давлении и при давлении насыщенного пара и представить их только как функции температуры.

С ростом температуры у большинства жидкостей d, DHисп, e, g, п и особенно резко h и l уменьшаются, а aV, bT, Ср и D возрастают. Такое поведение характерно для так называемых нормальных жидкостей. По мере приближения к критическому давлению свойства жидкость начинают заметно изменяться с давлением. Это, в первую очередь, связано с зависимостью плотности d от температуры и давления, устанавливаемой термическим уравнением состояния. Подобие термодинамических свойств отдельных групп нормальных жидкостей (например, членов одного гомологического ряда) является основанием для вывода эмпирических соответственных состояний закона.

От нормальных жидкостей отличают так называемые ассоциированные жидкости (вода, спирты и т. п.), обладающие высокими значениями температуры кипения, DHисп, e, d и других свойств; жидкие металлы и полупроводники. для которых характерна высокая электрическая проводимость; расплавы солей. характеризующиеся электролитической диссоциацией молекул с образованием катионов и анионов. Отдельную группу составляют квантовые жидкость (изотопы гелия), существующие при очень низких температурах и проявляющие специфические квантовые свойства (например, сверхтекучесть).

Квантовой жидкость является жидкий гелий. Плотность нормальных жидкость при атм. давлении обычно на два-три порядка превышает плотность газа при нормальных условиях, а их сжимаемость очень мала (bT ~ 10-9 м2/Н). Это свидетельствует о значительном сближении молекул в жидкости.

Малое различие значений теплоемкости жидкости и твердых тел указывает на сходный характер теплового движения в жидкости и твердых телах. Вместе с тем вид зависимостей h и D от температуры говорит о более сложном характере теплового движения молекул в жидкости Считается, что молекулы жидкости совершают частые столкновения с ближайшими соседями и относительно более редкие перемещения, приводящие к смене окружения. Наличие сильного взаимного притяжения молекул обусловливает свойства жидкость сокращать свою свободную поверхность и охлаждаться при испарении, если отсутствует подвод тепла (соответствующие характеристики жидкость - поверхностное натяжение g и энтальпия испарения DHисп). Последняя примерно на порядок превосходит среднюю энергию теплового движения.

Вблизи критического состояния наблюдается ряд особенностей жидкость: DHисп, g, D стремятся к нулю, а aV, bT, l, Ср и СV -к бесконечности. Характер изменения свойств в непосредственной близости критической точки для большинства изученных жидкость универсален, то есть не зависит от молекулярного строения жидкости.

Статистическая теория жидкости Современные молекулярные теории жидкость основаны на экспериментально установленном наличии статистической упорядоченности взаимного расположения ближайших друг к другу молекул - так называемого ближнего порядка. Положения и ориентации двух или более молекул, расположенных далеко друг от друга, оказываются статистически независимыми, т. е. дальний порядок в жидкость отсутствует. Характер теплового движения молекул и составляющих их атомов, а также структура ближнего порядка, координационного числа и другие характеристики исследуются в основном дифракционными методами - рентгеновским структурным анализом, нейтронографией, а также методами акустической и диэлектрической спектроскопии, ЯМР, ЭПР и др.

Статистическая теория жидкость ставит своей целью объяснение наблюдаемых особенностей структуры и предвычисление равновесных свойств (энтальпии, энтропии, поверхностного натяжения и др.) и динамических свойств (вязкости, самодиффузии, поглощения звука и т. п.), исходя из законов движения и взаимодействия частиц (атомов, молекул, свободных радикалов, ионов). С позиций этой теории чистые жидкости подразделяют на классические и квантовые - согласно законам, которым подчиняется движение частиц, и на ряд классов в соответствии с видами межчастичных сил, которые действуют в жидкость: 1) простые жидкости; к ним относят сжиженные благородные газы, жидкие металлы Na, Au, Sn и т. д., некоторые молекулярные жидкости с молекулами, близкими к сферически симметричным (напр., СН4, SF6). Между частицами в простых жидкость действуют центральные силы: обменное отталкивание на малых расстояниях и слабое дисперсионное притяжение на больших. 2) Неполярные молекулярные жидкость (N2, Cl2, CS2, C2H6, С6Н6, ...), которые отличаются от простых жидкость нецентральным характером отталкивания частиц, а также анизотропией сил взаимного притяжения, включающего дисперсионное и квадруполь-квадрупольное электростатическое взаимодействия. 3) Полярные жидкоси (SO2, CF3Cl, C6H5Br и т. п.) с диполь-дипольным, диполь-квадрупольным и другими нецентральными электростатическими вкладами во взаимодействие молекул. В полярных жидкостях существенную роль играет индукционное взаимодействие, связанное с взаимной поляризацией молекул. 4) Ассоциированные жидкости; к ним принадлежат, в частности, полярные жидкость, молекулы которых взаимодействуют друг с другом с образованием водородных связей (спирты, амины, карбоновые кислоты, вода). Предполагается, что в таких жидкость существуют сравнительно устойчивые группы частиц - комплексы. 5) жидкость, частицы которых обладают незамкнутыми электронными оболочками (NO, NO2, AlCl3, Si, Ge, S и т. п.) и могут вступать в валентное взаимодействие друг с другом. Их называют реагирующими жидкость, поскольку в них происходит образование и разрыв ковалентных и других химических связей. Полимерные жидкость, а также жидкость со сплошной сеткой ковалентных связей (напр., SiO2) обычно рассматриваются как предельный случай реагирующих жидкость.

Наибольшие успехи достигнуты статистической теорией в изучении простых жидкостей. Для вычисления их термодинамических функций достаточно знать потенциальную энергию парного взаимодействия частиц и радиальную функцию распределения, задающую плотность вероятности нахождения двух частиц на определенном расстоянии друг от друга. Энергия парного взаимодействия обычно определяется модельными потенциалами, например Леннард-Джонса. Функции распределения вычисляют, решая приближенные интегральные уравнения, либо определяют на основе экспериментальных структурных исследований. Большое развитие получили расчетные методы численного эксперимента - Монте-Карло и молекулярной динамики. Метод Монте-Карло позволяет вычислять с помощью ЭВМ структурные характеристики и определять термодинамические свойства модельных жидкость с заданным законом взаимодействующих частиц. С помощью метода мол. динамики можно, помимо этого, изучать характер совместного теплового движения большого числа частиц и моделировать динамическое поведение жидкость, то есть определять коэффициент переноса h, l и D. Методами численного эксперимента установлено, что структура ближнего порядка простых жидкость при заданной плотности определяется в основном силами межмолекулярного отталкивания. Это позволяет с успехом применять для расчета свойств простых, а также молекулярных и полярных жидкость термодинамическую теорию возмущений. В качестве начального приближения используют термодинамические функции, вычисленные для модельных систем сферически симметричных либо жестких несферических частиц без взаимного притяжения, а вклад последнего учитывается как возмущение.

Для практических вычислений широко используются также модельные решеточные теории - свободного объема, дырочные, кластерные и другие, основанные на представлении о квазикристаллическом строении жидкости. Каждая частица считается движущейся независимо от других в некотором силовом поле, обусловленном взаимодействии с остальными частицами, находящимися в узлах пространств решетки. Это поле ограничивает возможность перемещения частицы пределами определенной ячейки; разность объемов ячейки и самой частицы представляет собой свободный объем ячейки, а сумма этих величин - свободный объем всей жидкость Понятие о свободном объеме оказывается полезным при рассмотрении процессов переноса в некоторых жидкостях. Дальнейшим развитием решеточных теорий являются т. наз. дырочные теории, допускающие возможность отсутствия частиц в некоторых ячейках. Несмотря на то что решеточные теории переоценивают упорядоченность жидкость, многие свойства жидкость (плотность, внутренняя энергия и др.) передаются ими при правильном выборе параметров модели удовлетворительно.

Для объяснения поведения реагирующих и ассоциированных жидкость учитывают влияние на их структуру короткодействующих насыщаемых (т. е. локализованных между отдельными пара.и частиц) сил притяжения. Это влияние выражается в образовании различных связанных групп частиц: от димеров, тримеров и т. д. до цепочек, слоев и целых пространствtyys[ структур, обусловленных кoвалентными либо водородными связями. Равновесные концентрации димеров, тримеров и т. п. могут быть определены на основе закона действующих масс, а свойства жидкость рассчитаны как свойства жидкой смеси мономерных, димерных и других молекул, находящейся в химическом равновесии. В практических расчетах применяют так называемые квазихимические модели, в которых константы равновесия не вычисляются, а рассматриваются как пара.етры. Такой подход оказывается полезным при описании как чистых жидкость, так и растворов.

В ряде случаев выделение отдельных ассоциатов либо соединений невозможно и вся жидкость становится одним "ассоциатом", в котором происходит образование и разрыв водородных или ковалентных связей (напр., SiO2, H2O при низких температурах). Последовательная статистическая теория таких жидкость пока далека от завершения; для исследования широко используют численные эксперименты, а также методы статистич. геометрии, основанные на моделях случайных сеток, и некоторые другие. Из-за сложного характера теплового движения частиц жидкость теория их динамич. свойств развита недостаточно. Процессы переноса качественно верно описывает теория Энскога, основанная на модели твердых сфер. Она позволяет выразить h, l, и D простых жидкость через их значения в газовой фазе и термодинамич. свойства жидкость Находит применение и т. наз. структурная теория Эйринга, основанная на условном выделении в жидкость "газоподобных" и "твердоподобных" областей и соответствующей интерполяции свойств жидкость между свойствами газа и твердого тела.

Влияние жидкой среды на протекание химических процессов может быть весьма значительным. Направление, в котором смещается химическое равновесие при перeходе реагирующей смеси из газовой фазы в жидкость, зависит от того, как изменяет введение реагентов структуру жидкости. В нормальных жидкостях равновесие смещается в сторону образования более компактных реагентов, т. е. молекул с меньшим собственным объемом. Изохорный тепловой эффект химических реакций мало изменяется при переходе из газовой фазы в жидкость, т. к. энергия разрыва химической связи обычно значительно превышает энергию взаимодействия реагентов с молекулами жидкости. Изменение изобарного теплового эффекта химической реакции может быть значительным, так как оно связано со смещением равновесия при тепловом расширении жидкости. Полярные и ассоциированные жидкость с высокими значениями Е способны значительно смещать равновесие электролитич. диссоциации и перестраивать локальную структуру вблизи растворенного иона.

Лит.: Фишер И. 3., Статистическая теория жидкостей. М., 1961; Скрипов В. П., Метастабильная жидкость. М., 1972; Френкель Я. И., Кинетическая теория жидкостей. Л., 1975; Крокстон К., Физика жидкого состояния, пер. с англ., М., 1978; Скрышевский А. Ф., Структурный анализ жидкостей и аморфных тел, 2 изд., М., 1980; Резибуа П., де Ленер М., Классическая кинетическая теория жидкостей и газов, пер. с англ.. М., 1980; Займан Джидкость, Модели беспорядка, пер. с англ., М., 1982. Е. С. Якуб.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVI
Контактная информация