новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

ПЛАЗМОХИМИЯ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ПЛАЗМОХИМИЯ, изучает кинетику и механизм хим. превращений и физ.-хим. процессов в низкотемпературной плазме. Низкотемпературной принято считать плазму с температурой 103-105 К и степенью ионизации 10-6-10-1, получаемую в электродуговых, высокочастотных и СВЧ газовых разрядах, в ударных трубах, установках адиабатич. сжатия (см. Адиабатического сжатия метод)и др. способами. В плазмохимия особенно важно разделение низкотемпературной плазмы на квазиравновесную, которая существует при давлениях порядка атмосферного и выше и характеризуется общей для всех частиц температурой, и неравновесную, которая м. б. получена при давлениях менее 30 кПа и в которой температура своб. электронов значительно превышает температуру тяжелых частиц (молекул, ионов). Это разделение связано с тем, что кинетич. закономерности квазиравновесных плазмохим. процессов определяются только высокой температурой взаимодействующих частиц, тогда как специфика неравновесных плазмохим. процессов обусловлена главным образом большим вкладом хим. реакций, инициируемых "горячими" электронами.

Квазиравновесные плазмохимические процессы. В практически интересной области температур (3-5) · 103 К хим. реакции протекают со столь высокими скоростями, что их характерные времена tx становятся одного порядка с характерными временами tп процессов тепло- и массопереноса, т.е. критерий Дамкёлера (см. Макрокинетика). В результате процессы могут переходить из кинетич. области протекания в диффузионную. Механизмы реакций также могут претерпевать значит. изменения; в частности, могут играть существ. роль реакции с участием частиц, возбужденных по внутр. степеням свободы. Плазму в этом случае рассматривают либо как эффективный энергоноситель, либо как источник химически активных частиц (атомов, радикалов, возбужденных частиц), но чаще всего — в том и другом качествах одновременно. Анализ кинетики плазмохим. процессов проводят с учетом газодинамич. особенностей течения реагирующей смеси в реакторе, тепло- и массообмена. как правило, в условиях интенсивной турбулентности и при наличии возвратных течений в канале реактора (см. Плаз-мохимическая технология). В тех случаях, когда целевой продукт процесса находится в области равновесного протекания реакции, при исследовании процесса может оказаться достаточным применение термодинамич. анализа. Классич. пример подобного процесса - фиксация атм. азота в электродуговых плазмотронах.

Неравновесные плазмохимические процессы. Энергия электрич. поля газового разряда передается электронам, которые отдают ее др. частицам плазмы при столкновениях. При упругих столкновениях вследствие относительно малой массы электронов эффективность передачи энергии тяжелым частицам невелика; кроме того, при пониж. давлениях среднее число столкновений частиц в единицу времени вообще относительно мало. Это приводит к тому, что средняя энергия электронов существенно превышает среднюю энергию тяжелых частиц. Так, в плазме тлеющего разряда в газах при давлениях 10—103 Па средняя энергия электронов составляет обычно 3-10 эВ, тогда как поступат. энергия тяжелых частиц и вращат. энергия молекул не превышают 0,1 эВ; в то же время колебат. энергия молекул может приближаться к средней энергии электронов.

При указанных энергиях электронов возрастает число их неупругих столкновений с тяжелыми частицами, приводящих к хим. реакциям (в т.ч. к ионизации) и возбуждению частиц по внутр. степеням свободы, главным образом электронным. В свою очередь, ионы и возбужденные частицы (особенно в метастабильных электронных состояниях) могут оказывать определяющее влияние на механизм и кинетику плазмохим. реакций. Скорости реакций с участием возбужденных частиц, ионов и радикалов превышают, как правило, скорости образования этих частиц, поэтому суммарная скорость хим. превращения лимитируется именно стадией образования. В лаб. установках низкотемпературная плазма ограничена твердыми стенками сосуда, в котором она генерируется, и при пониж. давлениях характерные времена диффузии частиц к стенкам сосуда сближаются с характерными временами хим. реакций. В результате роль гетерог. физ.-хим. процессов возрастает в такой мере, что их необходимо учитывать при анализе механизмов и кинетики плазмохим. реакций.

Среди реакций, протекающих в неравновесной плазме, наиб. распространены диссоциативная ионизация молекул, диссоциация через электронно-возбужденные состояния, диссо-циативное прилипание электронов к молекулам, ступенчатая диссоциация электронным ударом, диссоциативная рекомбинация при столкновениях мол. ионов с электронами и тяжелых частиц между собой (см. Ионы в газах). Часто наиб. интерес представляют именно гетерог. процессы, например образование (или травление) пленок разл. природы на внутр. пов-сти реактора или на помещенных в плазму подложках. И без того нелегкая задача анализа кинетики и механизмов хим. реакций осложняется тем, что, как правило, энергетич. распределение электронов существенно отличается от макс-велловского (особенно в высокоэнергетич. области, наиб, важной с точки зрения плазмохимия), а заселенность квантовых уровней частиц во мн. случаях не описывается ф-лой Больцмана. Плазмохим. реакции являются в осн. многоканальными процессами; число реализующихся каналов и их детальные механизмы могут претерпевать существ. изменения при изменении параметров плазмы (уд. энергии, степени ионизации, давления, состава). При проведении хим. реакций в условиях неравновесной плазмы собственно реактор и генератор плазмы в большинстве практически интересных случаев совмещены. Это требует учета влияния электромагн. полей на свойства плазмы и, следовательно, на кинетику и механизмы плазмохим. реакций. Протекание реакций в условиях неравновесной плазмы описывается неравновесной химической кинетикой.

Характерный пример плазмохим. процесса в неравновесной плазме - образование твердой пленки полимера на стенках плазмохим. реактора и помещаемых в него подложках в плазме тлеющего разряда в смесях углеводородов с инертными газами. Осн. канал диссоциации молекул исходного углеводорода - их возбуждение в нестабильные и предиссо-циирующие электронные состояния посредством прямого электронного удара. В области давлений от 10 до 103 Па, при уд. мощностях плазмы от 5 до 20 Вт/см3, относит. концентрации углеводородов в инертных газах от 0,1 до 10% по объему и временах пребывания в плазме от 5 мс до 100 с диссоциацией через колебат. возбуждение можно пренебречь, а вклад диссоциации в ионно-молекулярных реакциях становится существенным лишь вблизи ниж. границ указанных областей изменения давления и концентрации углеводородов. При уменьшении давления распределение электронов по энергиям - осн. кинетич. параметр неравновесной плазмы - обогащается в области больших энергий, в результате чего увеличивается константа скорости диссоциации молекул углеводородов, слабо зависящая от природы исходного углеводорода (в ряду CH4, C2H6, C3H8, C4H10, C5H12 и т.д.). Предложенные механизмы образования и роста полимерной пленки весьма сложны. Согласно одной из гипотез, все продукты диссоциации исходного углеводорода в газовой фазе переходят в пленку; в рамках др. гипотезы адсорбированные на пов-сти твердой подложки или уже образовавшейся пленки молекулы "пришиваются" к последней потоками ионов и электронов. Результаты измерений скорости роста пленки попадают в область между результатами расчетов, соответствующих указанным гипотезам.

Лит.: Теоретическая и прикладная плазмохимия, M., 1975; Словец-кий Д. И., Механизмы химических реакций в неравновесной плазме, M., 1980; Синтез соединений в плазме, содержащей углеводороды, M., 1985; Механизмы плазмохимических реакций углеводородов и углеродсодержащих молекул, ч. 1-2, M., 1987; Полак Л. С., [и др.], Химия плазмы, Новосиб., 1991.

А. А. Овсянников.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация