новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
тендеры / аналитика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы

расширенный поиск
каталог ресурсов
электронный справочник
авторефераты / книги
форум химиков
подписка / опросы
проекты / о нас

реклама на сайте
контакты
Магазин химических реактивов
поиск
   

главная > справочник > химическая энциклопедия:

КРИСТАЛЛОФОСФОРЫ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КРИСТАЛЛОФОСФОРЫ, неорг. кристаллич. люминофоры. Обычно представляют собой бесцв. или слабо окрашенные порошкообразные материалы. Типичные кристаллофосфоры - полупроводники с шириной запрещенной зоны более 2 эВ и низким значением темновой проводимости. Их люминесценция обусловлена наличием активатора или дефекта решетки. наиб. распространенные кристаллофосфоры - сульфиды, оелениды и теллуриды Zn и Cd, оксиды Са и Мn, оксисульфиды In и La (In2O2S, La2O2S), галогениды щелочных металлов. Активаторами обычно служат ионы металлов (Сu, Со, Mn, Ag, Еu и др.). Люминесценция кристаллофосфоры может происходить как в результате возбуждения непосредственно центров люминесценции, так и при поглощении энергии возбуждения кристаллич. решеткой кристаллофосфоры и передаче ее центрам люминесценции. В кристаллофосфоры обычно реализуется рекомбинац. механизм свечения, т.е. в процессе возбуждения создаются носители заряда (электроны в зоне проводимости и дырки в валентной зоне). значит. часть этих носителей рекомбинируeт на центрах свечения, что сопровождается переходом их в возбужденные состояния с послед. испусканием квантов видимого света. В результате диффузии носители заряда могут рекомбинировать не только с тем центром, из которого были высвобождены, но и с др. ионизованным центром. Отличит. особенность такого свечения - не экспоненциальный, а гиперболич. закон убывания яркости свечения после прекращения возбуждения. При наличии т. наз. ловушек - центров захвата неравновесных носителей заряда, такое послесвечение может продолжаться длит, время (до нескристаллофосфоры ч), причем его интенсивность обычно резко увеличивается при повышении температуры (явление термовысвечивания), а в некоторых случаях и при воздействии ИК излучения. Др. отличит. особенность - наличие процессов внеш. тушения, т.е. безызлучат. рекомбинации на т. наз. центрах тушения, образованных некоторыми примесями (напр., ионы переходных металлов) или дефектами кристаллич. решетки (напр., дислокации). Соотношение рекомбинации через разл. центры может сильно изменяться даже при небольших изменениях температуры или интенсивности возбуждения, что и приводит к резкой зависимости эффективности рекомбинац. свечения от условий возбуждения. При возбуждении кристаллофосфоры частицами с высокой энергией (напр., электронами) или коротковолновыми излучениями (напр., рентгеновским) возникает каскадная ионизация основного вещества вторичными (третичными и т.д.) электронами с достаточно высокой энергией. Поэтому число испускаемых квантов света может во много раз (в тысячи и более) превышать число первичных частиц или квантов возбуждающего излучения. Вместе с тем при неоптич. способах возбуждения люминесценции K. возникают дополнит. потери энергии, в результате которых энергетич. выход свечения оказывается в нескристаллофосфоры раз ниже, чем при фотолюминесценции. В некоторых кристаллофосфоры, в т.ч. активированных редкоземельными ионами, при люминесценции происходит не ионизация, а лишь возбуждение центров свечения квантами оптич. излучения или электронами относительно низких энергий. Однако и в этих кристаллофосфоры, особенно при высоких концентрациях рабочих ионов, возникают разл. процессы миграции энергии возбуждения. Эти процессы приводят к тушению полос свечения одного активатора и усилению (сенсибилизации) свечения др. центров. При достаточно высокой концентрации возбужденных центров возможно суммирование энергии возбуждения нескристаллофосфоры центров на одном из них, которое позволяет осуществлять т. наз. антистоксово преобразование ИК излучения в видимый свет. В ряде кристаллофосфоры при большой интенсивности возбуждения может возникнуть и лазерное излучение. Помимо природы, вида и условий возбуждения свойства кристаллофосфоры (спектр и энергетич. выход свечения, длительность послесвечения) существенно зависят от технологии их получения, которая обычно включает прокаливание аморфной шихты, состоящей из осн. вещества и активирующих добавок, при температурах 900-1200 °С. Для улучшения процесса кристаллизации в шихту иногда добавляют плавни (КСl, LiF, СаСl2 и др.). В процессе прокаливания происходит частичное замещение ионов осн. вещества ионами активирующих примесей. Для этой же цели применяют ионную имплантацию, элeктролитич. активацию, лазерные распыление и отжиг, др. методы, позволяющие получать кристаллофосфоры при значительно более низкой температурe. В ряде случаев синтез осуществляют в атмосфере инертных газов. Для формирования центров свечения заданной структуры и получения требующихся для практики свойств свечения в кристаллофосфоры часто вводят помимо активатора соактиваторы и сенcибилизаторы. О применении кристаллофосфоры см. в ст. Люминофоры. Лит.: Фок М. В., Введение в кинетику люминесценции кристаллофосфоров, М., 1964; Антонов-Романовский В. В.. Кинетика фотолюминесценции кристаллофосфоров. М., 1966; Неорганические люминофоры. М., 1975; Гурвич А. М., Введение в физическую химию кристаллофосфоров, 2 изд., М., 1982. Ю. П. Тимофеев.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация