новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

АБСОРБЦИЯ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

АБСОРБЦИЯ газов (лат. absorptio, от absorbeo-поглощаю), объемное поглощение газов и паров жидкостью (абсорбентом) с образованием растворабсорбция Применение абсорбция в технике для разделения и очистки газов. выделения паров из паро-газовых смесей основано на разл. растворимости газов и паров в жидкостях. Процесс, обратный абсорбция, наз. десорбцией; его используют для выделения из раствора поглощенного газа и регенерации абсорбентабсорбция Поглощение газов металлами (напр., водорода палладием) наз. окклюзией. абсорбция-частный случай сорбции.

Различают физ. и хим. абсорбция При физической абсорбция энергия взаимод. молекул газа и абсорбента в растворе не превышает 20 кДж/моль. При химической абсорбция (или абсорбция с хим. реакцией, часто наз. хемосорбцией) молекулы растворенного газа реагируют с активным компонентом абсорбента-хемосорбентом (энергия взаимод. молекул более 25 кДж/моль) либо в растворе происходит диссоциация или ассоциация молекул газабсорбция Промежут. варианты абсорбция характеризуются энергией взаимод. молекул 20-30 кДж/моль. К таким процессам относится растворение с образованием водородной связи, в частности абсорбция ацетилена диметилформамидом.

Статика абсорбции. Характеризует термодинамич. равновесие раствора с паро-газовой смесью, а также материальный и энергетич. балансы процессабсорбция При физ. абсорбция с образованием идеального раствора для растворите-ля и растворенного газа во всем интервале изменения состава в соответствии с законом Рауля растворимость газа:

где Р°2- давление паров над чистым сжиженным газом при данной температуре системы; р2 - парциальное давление газа; звездочкой обозначаются параметры вещества в условиях равновесия. Индексы "1" и "2" относятся соотв. к растворителю и газу. Идеальная растворимость x*2,ид-ф-ция только т-ры, свойства раствори-теля влияния на нее не оказывают.

Зависимость р-римости газов х*2 от их парциального давления при физ. абсорбция в бесконечно разбавленном растворе (х2 ->0) и при низких давлениях Р в системе описывается законом Генри (рис. 1, прямые 1 -3):

где КH-коэф. Генри, изменяющийся с изменением температуры. Если абсорбция проводят под давлением, но х*2 ->0, растворимость газа можно рассчитать по уравнению Кричевского - Казарновского:

где Кф-коэф. физ. растворимости, равный КH при х2-> 0 и Р-> -> 0; f*2-летучесть газа; -парциальный мольный объем растворенного газа в жидкой фазе при бесконечном разбавлении; R- универсальная газовая постоянная; Po1-давление насыщ. паров чистого р-рителя при абс. температуре системы Т. Если 0 < х*2 (0,05-0,1) молярной доли (разбавленные растворы), то при низких давлениях справедливо ур-ние Сеченова:

где А1,2-коэф., не зависящий от состава растворабсорбция

Рис. 1. Зависимость растворимости х2* некоторых газов в жидкостях парциального давления газов над растворами: I- СО2 в воде при 20 °С; 2-СО2 в пропиленкар-бонате при 25 С; 3 С2Н4 в диметилформамиде при 25 °С; 4-СО, в водном о-ое содержащем 25% К2СО3 и 10% диэтаноламина при 60°C 5-СО, в 2,5 н водном растворе моноэтаноламина при 20°С; х2* - в м3 газа (при нормальных условиях - 20°С и 0,1 МПа) на 1 м3 жидкости. 2

Рис. 2. Зависимость коэф. Генри (в мм рт. ст./молярные доли) для растворов газов в додекане от температуры.

Зависимость растворимости газа от температуры как при физ., так и при хим. абсорбция приближенно описывается ур-нием:

где -тепловой эффект растворения газабсорбция Если раствор при абсорбция нагревается, . С изменением температуры обычно либо остается постоянной, либо незначительно изменяется. Р-римость газа в смешанном растворителе (содержащем малополярные компоненты) можно оценить по соотношению:

где КН.си, КН.N-коэф. Генри соотв. для газа в смеси растворителей и для растворов этого газа в чистых компонентах растворителя; -коэф. активности компонентов растворителя (молярные доли относятся к смеси растворителей, свободной от растворенного газа).

Некоторые данные о растворимости газов приведены в таблице, где газы и растворители расположены в порядке возрастания энергетич. параметров и потенциала Леннард-Джонсабсорбция Эти параметры м. б. использованы для приближенной оценки растворимости газов при низких давлениях по ур-нию:

где -р-римость в 1 м3 газа, приведенная к нормальным условиям (20 °С, 0,1 МПа) на 1 м3 абсорбента; kв- константа Больцмана; Р0, T0-соотв. давление и температура при нормальных условиях; Р, Г-то же при рабочих условиях. Р-римость умеренно растворимых газов в данном р-рителе возрастает линейно с увеличением

Ниже приведены значения параметров потенциала Лен-нард-Джонса (в К) для газов и жидкостей :

Тепловой эффект растворения газа АЯ линейно изменяется с увеличением ; соотв. растворимость плохо растворимых газов , в основном Не, Ne, H2, N2, CO, Аr, О2 и NO, с возрастанием температуры увеличивается (за исключением водных растворов), а растворимость хорошо растворимых газов уменьшается. Типичные примеры для бесконечно разбавленных растворов приведены на рис. 2. Р-римость таких газов, как H2S, COS, SO2, HC1, NH3, C12, обычно значительно выше, чем рассчитанная по ур-нию (1), вследствие специфич. взаимод. с молекулами растворителя.

При хим. абсорбция поглотит. способность абсорбента (емкость, соответствующая предельному кол-ву газа, который поглощается единицей объема абсорбента) и больше, чем при физ. абсорбция При необратимой реакции (напр., при поглощении СО2 р-рами NaOH с образованием Na2CO3) равновесное давление газа над раствором равно нулю, пока в растворе есть непрореагировавший абсорбент, и поглотит. способность определяется стехиометрией реакции. При обратимой р-ции давление газа над раствором равно нулю, но по сравнению с физ. абсорбция резко изменяется характер зависимости растворимости газа от давления (рис. 1, кривые 4, 5). Так в простейшем случае, когда в растворе происходит только одна реакция и активности компонентов раствора равны их концентрациям, имеем:

где Кх = ASKфKP-константа равновесия системы газ-жидкость; Кр — константа равновесия реакции; -равновесная степень превращения абсорбента; x1- начальная концентрация абсорбента; h-число молей продуктов реакции на 1 моль прореагировавшего газа; j-число молей абсорбента, вступивших во взаимод. с 1 молем растворенного газа; A5-коэф., зависящий от стехиометрии.

Коэф. ускорения абсорбция могут быть достаточно велики. Так, в случае поглощения СО2 в насадочной колонне при одинаковых нагрузках по фазам, температуре и давлении, используя 2 н. водный раствор КОН (15% К содержится в растворе в виде карбоната), можно получить по сравнению с физ. абсорбция СО2 водой. Гипотетич. идеальный растворитель, не обладающий сопротивлением переносу в жидкой фазе и имеющий бесконечно большую реакц. способность, обеспечил бы

Увеличение и (иногда в неск. раз) может происходить под влиянием поверхностной конвекции, вызываемой локальными градиентами поверхностного натяжения, которые возникают в ряде случаев в результате массоотдачи, особенно при одноврем. протекании р-ций (напр., при абсорбция СО2 водными растворами моноэтаноламина). Это необходимо учитывать при подборе новых хемосорбентов. Значение если реакция приводит к возникновению поверхностной конвекции, следует определять на основе коэф. массоотдачи при физ. абсорбция, найденного в условиях воздействия на процесс конвективных микропотоков вблизи границы раздела фаз.

При расчете скорости абсорбция часто используют коэф. массо-передачи, определяемые по гипотетич. поверхностным составам и, следовательно, по гипотетич. движущим силам. Обычно принимают, что коэф. массопередачи, отнесенный к концентрации в газе, Кг [кмоль/(м2 *МПа*с)] обусловлен движущей силой (у2-у*2), где у*2-молярная доля поглощаемого компонента в газе, которая отвечает равновесию с жидкостью, имеющей средний объемный состав х2; у2 -средний объемный состав газа в данном сечении аппаратабсорбция Тогда получим:

Аналогично можно найти движущую силу (x*2 — х2) и коэф. массопередачи Кж. Из выражений (2) и (3) следует:

где т = (y2,гр — y*2)/(x2,гр - х2)-наклон равновесной линии в интервале концентраций от х2, у2до x2,гр, y2,гр. Выражение (4) записано для локального коэф. массопередачи и показывает, что этот коэффициент зависит от наклона линии равновесия. Наиб. удобно рассчитывать коэф. массопередачи по ур-нию (4) в случаях, когда наклон равновесной линии остается почти постоянным в рабочем интервале концентраций. При искривленной линии равновесия необходимо учитывать зависимость m от концентрации.

абсорбция осуществляют в массообменных аппаратах, наз. абсорберами,-тарельчатых, насадочных (устаревшее название-скрубберы), пленочных, роторно-пленочных и распылительных. Схема материальных потоков в абсорбере представлена на рис. 3. Связь между концентрациями поглощаемого компонента в газе у2 и в жидкости в любом горизонтальном сечении аппарата находят из ур-ния материального баланса (т. наз. ур-ние рабочей линии). В общем случае это ур-ние имеет вид:

где L и G-расходы жидкости и газабсорбция Когда объемы фаз в ходе абсорбция изменяются незначительно, рабочая линия-прямая:

Здесь индексом "н" обозначается ниж. сечение противоточного абсорбера или десорберабсорбция

Существенное влияние на ход рабочей и равновесной [у* =f(x*2)] линий могут оказать тепловые эффекты абсорбция Ход рабочей линии может сильно зависеть от интенсивности испарения растворителя (особенно при десорбции). Если абсорбция сопровождается значит. выделением теплоты, а кол-во абсорбированного вещества достаточно велико, растворитель может сильно нагреваться при прохождении через колонну. Примеры-осушка воздуха с помощью конц. H2SO4, растворение НС1 в воде при получении конц. соляной кислоты. Температурный режим абсорбера, от которого зависят равновесное давление поглощаемого компонента, т.е. движущая сила процесса, физ.-хим. свойства системы и ход рабочей линии рассчитывают по ур-нию теплового баланса абсорберабсорбция

Рис. 3. Схема материальных потоков в абсорбере и хол рабочей и равновесной линий (а-при противотоке, 6-при прямотоке): ЛВ-рабочая линия; ОС-равновесная линия; и -движущая сила соотв. в газовой фазе в верх, и ниж. сечениях аосороера и в газовой и жидкой фазах на ступени.

При отсутствии внеш. подвода или отвода теплоты, при одинаковых температурах газа и жидкости и без учета испарения и конденсации абсорбента и теплот растворения др. газов изменение температуры абсорбента в любом сечении абсорбера составляет: , где Ср - теплоемкость раствора, -изменение концентрации газа в рассматриваемом сечении. Обычно принимают, что температура жидкости на межфазной границе и в объеме одинаковая. Поскольку наиб. концентрация растворенного газа и соотв. наиб. тепловыделение наблюдаются вблизи пов-сти контакта фаз, температура межфазной пов-сти, определяющая истинное равновесие, часто существенно отличается от температуры объема жидкости. Методы учета этого явления разрабатываются.

Чтобы вычислить пов-сть массообмена F, необходимую для обеспечения желаемого изменения состава газа в абсорбере, можно использовать локальные значения скорости массопередачи [см. ур-ние (3)1 совместно с ур-нием материального баланса по абсорбируемому компоненту. При постоянстве коэф. массоперелачи по высоте аппарата:

где G-мольная массовая скорость газа, кмоль/(м2*с);

No,r-общее число единиц переноса в газовой фазе:

Этот важный параметр зависит только от технол. режима процесса, определяется положением рабочей и равновесной линий и показывает, как влияет движущая сила а.сорбции на высоту аппаратабсорбция Число единиц переноса, а следовательно, и высота абсорбера, бесконечно велики, если абсорбер работает при миним. кол-ве циркулирующего абсорбента, когда . При увеличении габариты аппарата уменьшаются, но возрастают расход энергии и степень растворения плохо растворимых компонентов газовой смеси, что приводит либо к их потере и загрязнению извлекаемого газа, либо к дополнит. затратам на разделение растворенных газов.

При расчете абсорберов, особенно тарельчатых, часто используют понятие эффективности ступени, или степени приближения к равновесию . Эту величину можно определить как отношение фактически реализованного изменения состава к изменению, которое произошло бы при достижении равновесия:

где индексом "в" обозначается верх. сечение противоточного аппаратабсорбция

Во мн. типах ступенчатых контактных устройств достигнута . Это означает, что при мат. анализе таких устройств правомерно использовать понятие о равновесной ступени. Рассчитав число теоретич. тарелок и зная эффективность ступени , можно определить число реальных ступеней, необходимых для обеспечения заданной степени разделения.

Основы технологии абсорбционных процессов. абсорбция часто осуществляют в виде абсорбционно-десорбционного цикла (циклич. процесс), однако стадия д.сорбции может отсутствовать, если в результате абсорбция получают готовый продукт или регенерация поглотителя невозможна (разомкнутый процесс). На рис. 4 приведена одна из простейших схем абсорбционного разделения газов. Для снижения расхода энергии иногда применяют двух- и многопоточные схемы с отводом грубо- и тонкорегенерированного растворов в разных сечениях десорбера и подачей их в разл. точки абсорбера либо направляют насыщ. раствор абсорбента в разные точки десорбера и т.п.

Рис. 4. Принципиальная схема абсорбционно-десорбционного цикла: 1 -абсорбер; 2-насос; 3-десорбер; 4 - холодильник; 5-теплообменник; 6-кипятильник; 7 - конденсатор.

Регенерацию абсорбентов (десорбцию газов) можно проводить снижением давления (вплоть до вакуумирования), нагреванием, отдувкой плохо растворимыми газами и парами кипящего абсорбента, а также сочетанием этих приемов.

Физ. абсорбция осуществляют, как правило, при температуре окружающей среды (20-40°С) или при пониженных температурах, т.к. растворимость хорошо растворимых газов возрастает с уменьшением т-ры. Кроме того, при снижении температуры уменьшается растворимость плохо растворимых газов, т.е. увеличивается селективность и снижаются потери плохо растворимого компонента и загрязнение им извлекаемого газа, а также уменьшаются давление паров абсорбента и его потери. При хим. абсорбция увеличение температуры приводит к значит. росту коэф. массопередачи и, помимо этого, к возрастанию растворимости мн. абсорбентов в разбавителях, а следовательно, к увеличению до определенного предела общей поглотит. способности абсорбентабсорбция

При физ. абсорбция с повышением парциального давления поглощаемого компонента поглотит. способность абсорбента почти всегда увеличивается приблизительно пропорционально парциальному давлению или концентрации газабсорбция Поэтому кол-во циркулирующего абсорбента почти не зависит от концентрации извлекаемого газа в исходной газовой смеси. При хим. абсорбция характер изменения растворимости газа с ростом его парциального давления сильно зависит от константы равновесия реакции и степени превращения абсорбентабсорбция В результате при увеличении концентрации извлекаемого газа кол-во циркулирующего абсорбента возрастает.

Физ. абсорбция, как правило, наиб. эффективна при грубой очистке от больших кол-в газа под давлением. Хим. абсорбция чаще всего применяют при извлечении малых кол-в примесей и при тонкой очистке; при этом обычно существенно выше селективность абсорбента, ниже кол-во циркулирующего раствора вследствие большой поглотит. способности, меньше расход электроэнергии, но выше расход теплоты.

Режим абсорбции. При расчете абсорбция обычно задают параметры очищаемого газа (давление, т-ру, состав) и предъявляют требования к очищенному газу. Необходимый для осуществления абсорбция расход жидкости (кол-во циркулирующего абсорбента) определяется материальным балансом и кинетикой абсорбция Концентрация у2,в извлекаемого компонента в очищенном газе зависит от х2,в:

где -степень приближения к равновесию на выходе газа из абсорбера, зависящая от скорости процессабсорбция В общем случае:

где G2-кол-во извлекаемого газабсорбция При необратимой реакции миним. кол-во циркулирующего поглотителя определяют из стехиометрич. ур-ния реакции и находят .

Соотношение расходов жидкости и газа определяется ур-нием:

При разомкнутых процессах обычно , при циркуляционных - х2,в х2,р (концентрация газа в регенерированном растворе). В простейшем случае (при и ) имеем: . Если растворимость описывается законом Генри, то .При этом кол-во циркулирующего абсорбента не зависит от кол-ва извлекаемого газабсорбция При достижении равновесия на выходе из абсорбера

Важный параметр процесса - т. наз. абсорбционный фактор:

который при полном извлечении газа 1. Этот фактор равен отношению тангенсов углов наклона рабочей и равновесной линий, которые выражают зависимость соотв. реальной и равновесной концентраций извлекаемого компонента в газовой фазе от его концентрации в жидкости. Параметр А одновременно характеризует избыток кол-ва циркулирующего абсорбента по сравнению с минимально необходимым для полного извлечения р-римого газабсорбция

Режим д.сорбции газов (регенерации абсорбентов). Максимально допустимую концентрацию растворенного компонента в регенерированном растворе определяют из условия равновесия на выходе из абсорбера (при противотоке). Минимально достижимую концентрацию газа в том же растворе при д.сорбции в результате снижения давления, нагревания или отдувки парами абсорбента находят с помощью условия равновесия на выходе р-ра из десорбера:

где Р и Рпар- общее давление в регенераторе и давление паров абсорбентабсорбция В некоторых случаях, особенно при регенерации хемосорбентов, предельная глубина регенерации определяется равновесием в к.-л. другом (не в нижнем) сечении десорберабсорбция Это т. наз. критич. сечение определяют после построения равновесной и рабочей линий д.сорбции либо спец. расчетом.

При регенерации отдувкой плохо растворимым газом предельная глубина регенерации не ограничена давлением и температурой в десорбере, но зависит, как и при отдувке парами абсорбента, от расхода отдувочного агентабсорбция Его миним. расход находят из условия соблюдения ур-ния (5) не только на выходе раствора из десорбера, но и в любом его сечении. Верх, сечение противоточного аппарата, где газ выходит из оегенератора, часто является лимитирующим. Тогда = G2Ф*, где Ф* = р*пар/p2*(t,x2,в)-отношение давления паров абсорбента к давлению газа над раствором. Если отдувка производится плохо растворимым газом, то Ф * = = (Р — p2,в*)/p2,в. При отдувке парами кипящего растворителя, когда температура в критич. сечении десорбера задана, Ф = = pпар/(Р - pпар). Окончат. расход отдувочного агента можно определить только после построения рабочей и равновесной линий, нахождения местоположения в аппарате критич. сечения и оптимизации абсорбционно-десорбционного циклабсорбция

При д.сорбции парами кипящего абсорбента давление, температура и концентрация газа в растворе связаны изобарной равновесной зависимостью Tкип от х2, где Tкип-т-ра кипения раствора при давлении Р в регенераторе. Расчет д.сорбции смеси газов проводят на основе ур-ния, аналогичного (5):

где -сумма давлений растворенных газов. Режим д.сорбции находят совместным решением ур-ния (6) с ур-ниями материального баланса по каждому компоненту методом последоваг. приближений. Равновесную линию д.сорбции строят по ур-нию:

Построение рабочей линии при д.сорбции парами кипящего абсорбента значительно отличается от построения рабочей линии абсорбера и заключается в совместном решении ур-ний материального и теплового балансов по участкам аппарата при заданном общем расходе теплоты. Рабочая и равновесная линии при д.сорбции (рис. 5) могут пересечься не в конечных точках х2,в или х2,н, как при абсорбция, а в промежуточном (критическом) сечении десорберабсорбция Это характерно для "сильных" хемосорбентов (напр., при д.сорбции СО2 из водных р-ров моноэтаноламина) при их глубокой регенерации. Миним. расход отдувочного агента определяется равновесием в критич. сечении и зависит от глубины регенерации.

Рис. 5. Равновесная (/) и рабочие (2, 3) линии д.сорбции СО2 из водного раствора моноэтаноламина при давлении 0,18 МПа и разл. глубине регенерации: x2, у2-концентрации СО2 соотв. в газе и жидкости.

Др. параметры десорбции, в частности число единиц переноса, рассчитывают так же, как при абсорбция Однако коэф. массопередачи могут неск. отличаться от величин, найденных при абсорбция, вследствие наличия пузырьков газа (пара), возникающих при кипении жидкости или в результате сброса давления, влияния теплоты конденсации отдувочного агента, существенного изменения расходов фаз по высоте аппаратабсорбция Скорость хим. абсорбция зависит от скорости прямой реакции образования соединения между поглощаемым газом и активной частью хемосорбента, а скорость десорбции-от скорости разложения этого соединения и т.п.

Расход энергии на абсорбционное разделение газовых смесей. Этот расход складывается из расхода электроэнергии на циркуляцию раствора, подачу отдувочного и охлаждающего (воды или воздуха) агентов, рециркуляцию газовых потоков и расхода теплоты. При циклич. процессах физ. абсорбция в основном потребляется электроэнергия на перекачивание раствора, а при хим. абсорбция-теплота на его регенерацию. При регенерации р-ра теплота расходуется на его нагревание (Qнагр)" покрытие теплоты д.сорбции Qдес (численно равной теплоте абсорбция) и на создание отдувочного пара (Qотд), если отдувка осуществляется парами кипящего абсорбента:

где и -тепловые эффекты соотв. испарения абсорбента и десорбции; -разность т-р регенерированного и насыщ. растворов на холодном конце теплообменникабсорбция Давление д.сорбции может сильно сказываться на расходе энергии, особенно при регенерации под вакуумом. При д.сорбции парами кипящего абсорбента соответствующие изменения давления и температуры вызывают изменение Ф*. Если

то с увеличением температуры Qотд возрастает. В противном случае Qотд уменьшается и при заданном расходе теплоты с увеличением давления десорбции регенерация не ухудшается, а улучшается, однако до некоторого предела, определяемого термохим. устойчивостью абсорбента и возрастанием Qнагр. Энергетич. затраты на десорбцию газов (регенерацию абсорбентов), как правило, значительно превышают расход энергии на абсорбция

Лит.: Рамм В. М., Абсорбция газов, 2 изд., М., 1976; Очистка технологических газов, под ред. Т. абсорбция Семеновой, И. Л. Лайтеса, 2 изд., М., 1977; Кафаров В. В., Основы массопередачи, 3 изд., М., 1979; Шервуд Т., Пигфорд Р., Уилки Ч., Массопередача, пер. с англ., М., 1981 Н.Н. Кулов, И. Л. Лейтес.


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация