новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Спектрофотометрия


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Спектрофотометрия, метод исследования и анализа веществ, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. Иногда под спектрофотометрией понимают раздел физики, объединяющий спектроскопию (как науку о спектрах электромагнитного излучения), фотометрию и спектрометрию [как теорию и практику измерения соотв. интенсивности и длины волны (или частоты) электромагнитного излучения]; на практике спектрофотометрия часто отождествляют с оптической спектроскопией. По типам изучаемых систем спектрофотометрия обычно делят на молекулярную и атомную. Различают спектрофотометрия в ИК, видимой и УФ областях спектра (смотри Инфракрасная спектроскопия, Ультрафиолетовая спектроскопия).

Применение спектрофотометрии в УФ и видимой областях спектра основано на поглощении электромагнитного излучения соединениями, содержащими хромофорные (напр., С = С, С=С, С=О) и ауксохромные (ОСН3, ОН, NH2 и др.) группы (см. Цветность органических соединений). Поглощение излучения в этих областях связано с возбуждением электронов s-, p-и n-орбиталей основного состояния и переходами молекул в возбужденные состояния: s : s*, n : s*, p : p* и n : p* (переходы перечислены в порядке уменьшения энергии, необходимой для их осуществления;). Переходы s : s* находятся в далекой УФ области, например у парафинов при ~ 120 нм. Переходы n : s* наблюдаются в УФ области; например, органических соединений, содержащие n-электроны, локализованные на орбиталях атомов О, N, Hal, S, имеют Полосы поглощения при длине волны около 200 нм. Линии, соответствующие переходам p : p*, например, в спектрах гетероциклических соединений проявляются в области около 250-300 нм и имеют большую интенсивность. Полосы поглощения, соответствующие переходам n : p*, находятся в ближней УФ и видимой областях спектра; они характерны для соединений, в молекулах которых имеются такие хромофорные группы, как С = О, C = S, N = N. Так, насыщенных альдегиды и кетоны имеют максимумы поглощения при длине волны около 285 нм. Переходы типа n : p* часто оказываются запрещенными, и соответствующие полосы поглощения обладают очень малой интенсивностью.

Переходы типа p : p* могут сопровождаться переходом электрона с орбитали, локализованной главным образом на одной группе (напр., С=С), на орбиталь, локализованную на др. группе (напр., С=О). Такие переходы сопровождаются переносом электрона с одного атома на другой и соответствующие спектры наз. спектрами с переносом заряда. Последние характерны для различных комплексов (например, ароматических соединений с галогенами), интенсивно поглощающих в видимой и УФ областях.

Для ионов переходных металлов и их комплексных соединений характерны переходы с участием d-электронов, а для РЗЭ и актиноидов - переходы с участием f-электронов. Соответствующие соединения в растворе бывают интенсивно окрашенными, причем окраска (спектр поглощения) зависит от степени окисления катиона и устойчивости комплексного соединения. Поэтому спектрофотометрия широко используют при исследовании и анализе комплексных соединений металлов.

Изолированные, не взаимодействующие между собой хромофоры в молекуле поглощают независимо. В случае какого-либо взаимодействия между ними аддитивность спектров нарушается. По отклонениям от аддитивности можно судить о характере и величине взаимодействия. Поскольку положение полос в спектре определяется как разность энергий основного и возбужденного состояний молекул, можно определять структуру энергетических уровней молекул или по известной схеме энергетических уровней определять положение полос поглощения. Любому электронному состоянию молекул соответствует набор различных колебательных уровней энергии. Колебательная структура полосы, соответствующей переходу между электронными уровнями, может отчетливо проявляться не только в спектрах газов, но и в спектрах некоторых растворов, что дает возможность получать дополнительную информацию о взаимодействии молекул. Спектрофотометрическое исследование спектров молекул в видимой и УФ областях позволяет установить вид электронных переходов и структуру молекул. При этом часто исследуют влияние различных типов замещения в молекулах, изменения растворителей, температуры и др. физ.-хим. факторов.

В ИК области проявляются переходы между колебательными и вращательными уровнями (смотри Колебательные спектры, Вращательные спектры). Среди частот колебаний молекул выделяют так называемые характеристические, которые практически постоянны по величине и всегда проявляются в спектрах хим. соединений, содержащих определенные функциональные группы (вследствие чего эти частоты иногда называют групповыми). Теория колебаний сложных молекул позволяет расчетным путем предсказать колебательный спектр соединений, т. е. определить частоты и интенсивности полос поглощения.

Колебательные спектры молекул чувствительны не только к изменению состава и структуры (т.е. симметрии) молекул, но и к изменению различных физических и химических факторов, например изменению агрегатного состояния вещества, температуры, природы растворителя, концентрации исследуемого вещества в растворе, различные взаимодействия между молекулами вещества (ассоциация, полимеризация, образование водородной связи, комплексных соединений, адсорбция и т. п.). Поэтому ИК спектры широко используют для исследования, качественного и количественного анализа разнообразных веществ.

В ближней ИК области (10000-4000 см-1, или 1-2,5 мкм), где расположены обертоны и составные частоты основных колебаний молекул, полосы поглощения имеют интенсивность в 102-103 раз меньше, чем в средней ИК области (4000-200 см-1). Это упрощает подготовку образцов, так как толщина поглощающего слоя может быть достаточно большой (до нескольких мм и более). Экспериментальная техника для работы в этой области относительно проста. Однако чувствительность и селективность определения отдельных соединений невелики. Тем не менее высокое отношение сигнал:шум (до 105) создает хорошие условия для количеств. анализа при содержании определяемого соединений около 1% и выше. Подобные анализы выполняются за 1 мин. В дальней ИК области (200-5 см-1) могут наблюдаться чисто вращательные переходы.

Интенсивность полосы поглощения молекулы определяется вероятностью соответствующего электронного (или колебательного) перехода. Для характеристики интенсивности полосы служит молярный коэффициент поглощения e, определяемый, согласно закону Бугера-Ламберта-Бера, как e = A/Cl, где А = = — lgT= — lg(I/I0), T-пропускание, I0 и I-интенсивности соотв. падающего и прошедшего через вещество излучения, С-молярная концентрация вещества, поглощающего излучение, l-толщина поглощающего слоя (кюветы), в см. Обычно e<105, в ИК области e<2•103 (л/моль•см). Закон Бугера-Ламберта-Бера лежит в основе количественного анализа по спектрам поглощения.

Для измерения спектров используют спектральные приборы-спектрофотометры, основные части которого: источник излучения, диспергирующий элемент, кювета с исследуемым веществом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призменный монохроматор или монохроматор с дифракционными решетками. Спектр получают в графической форме, а в приборах со встроенной мини-ЭВМ - в графической и цифровой формах. Графически спектр регистрируют в координатах: длина волны (нм) и(или) волновое число (см-1)-пропускание (%) и(или) оптическая плотность. Основные характеристики спектрофотометров: точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини-ЭВМ (или микропроцессоры) осуществляют автоматизированное управление прибором и различную математическую обработку получаемых экспериментальных данных: статистическую обработку результатов измерений, логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по различным программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т. п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких температурах, для измерения характеристик источников и приемников излучения и т.п.

Для исследования спектров в ИК области используют обычно спектрофотометры, работающие в интервале от 1,0 до 50 мкм (от 10000 до 200 см-1). Основными источниками излучения в них являются стержень из карбида кремния (глобар), штифт из смеси оксидов циркония, тория и иттрия (штифт Нернста) и спираль из нихрома. Приемниками излучения служат термопары (термоэлементы), болометры, различные модели оптико-акустических приборов и пироэлектрические детекторы, например на основе дейтерированного триглицинсульфата (ТГС). В спектрофотометрах, сконструированных по "классической" схеме, в качестве диспергирующих элементов применяют призменный монохроматор или монохроматор с дифракционными решетками. С кон. 60-х гг. 20 в. выпускаются ИК фурье-спектрофотометры, которые обладают уникальными характеристиками: разрешающая способность-до 0,001 см-1, точность определения волнового числа v-до 10-4 см-1 (относит. точность bDv/v ! ! 10 -8), время сканирования спектра может достигать 1 с, отношение сигнал:шум превышает 105. Эти приборы позволяют изучать образцы массой менее 1 нг. К ним также имеются разл. приставки для получения спектров отражения, исследования газов при малых или высоких давлениях, разных температурах и т. п. Встроенная в прибор мини-ЭВМ управляет прибором, выполняет фурье-преобразования, осуществляет накопление спектров, проводит различную обработку получаемой информации.

ИК фурье-спектрофотометры могут содержать программы по автоматической идентификации образца неизвестного состава и определению содержания примесей, например в полупроводниковых материалах.

Спектрофотометрия широко применяют для исследования органических и неорганических веществ, для качественного и количественного анализа различных объектов (в частности, природных), для контроля технологических процессов. Так, разработаны спектрофотометрические методы определения в растворах Сu и Rb (пределы обнаружения 3•10-6% по массе), Со (2,5 • 10 -5 % по массе), Hf и Zr (0,5 мкг/мл); V (0,2 мкг/мл), гликозидов (0,05 мкг), белков (0,2 мкг/мл), тимола (1-2 мкг/мл); в атмосфере можно определить СО, оксиды азота, этилен, О3, NH3, CH4 с пределами обнаружения ~ 10-7% по массе.

Лит.: Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Дайер Д. Р., Приложения абсорбционной спектроскопии органических соединений, пер. с англ., М., 1970; Приборы и методы анализа в ближней инфракрасной области, М., 1977; Смит А., Прикладная ИК-спектроскопия, пер. с англ., М., 1982; Современная колебательная спектроскопия неорганических соединений, Новосиб., 1990; Накамото К., ИК спектры и спектры КР неорганических и координационных соединений, пер. с англ., М., 1991. Э. Г. Тетерин.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация