Ингибиторы коррозии, химические соединения или их композиции, присутствие которых в небольших количествах в агрессивной среде замедляет коррозию металлов. Защитное действие ингибиторов коррозии обусловлено изменением состояния поверхности металла вследствие адсорбции (адсорбц. ингибиторы коррозии) или образования с ионамиметалла труднорастворимых соединений. Последние образуют на поверхности пленку, которая существенно тоньше конверсионных защитных покрытий (см. Защита откоррозии). Замедление коррозии происходит из-за уменьшения площади активной поверхности металла и изменения энергии активации электродных реакций, лимитирующих сложный коррозионный процесс. ингибиторы коррозии могут тормозить анодное растворение и вызывать пассивацию металла (анодные ингибиторы коррозии), снижать скорость катодного процесса (катодные ингибиторы коррозии) или замедлять оба эти процесса (смешанные ингибиторы коррозии).
Защитное действие ингибиторов коррозии количественно оценивают: коэф. торможения g =j0/jин, где j0 и jин - скорости коррозии (или величины, их характеризующие) в исходной и ингибир. среде соотв.; степенью защиты Z = (1 - 1/g).100%; миним. концентрацией И., обеспечивающей заданный уровень Z. В общем случае эффективность ингибирования сильно зависит от состава среды, природы металла и условий процесса (температура, давление и т.п.); для кинетической области протекания процесса обычно справедливо соотношение: g = 10kDy1 (1 — q)-1, где q - степень заполнения поверхности адсорбир. ингибитором. DY1- изменение электродного Y1 - потенциала в адсорбц. слое, k - эмпирич. постоянная, включающая кинетич. параметры электродных реакций (см. Электрохимическая кинетика).
Адсорбция ингибиторов коррозии и формирование на поверхности металла труднорастворимых слоев связаны с гидрофобностью поверхности и зарядом частиц, их способностью образовывать хим. связи с металлом или продуктами его взаимодействия с компонентами агрессивной среды. Как правило, катионоактивные ингибиторы коррозии замедляют активное анодное растворение. т.е. эффективны в области электродных потенциалов. меньших критич. потенциала пассивации, или тормозят катодные реакции. Для предотвращения питтинговой коррозии более эффективны анионактивные ингибиторы коррозии Часто ионогенные ингибиторы коррозии используют в композиции с разл. добавками для более эффективной защиты металлов в широком диапазоне электродных потенциалов.
Окислительная способность ингибитора коррозии может придать ему высокие защитные свойства за счет облегчения пассивации металла, но реализация этих свойств сильно зависит от рН среды и наличия в ней агрессивных агентов (активаторов коррозии), в первую очередь анионов Cl-, Br-, I-, CNS-, HS- и низших орг. кислот. ингибиторы коррозии, не обладающие окислит. свойствами, но образующие труднорастворимые комплексы (соли) с ионами растворяющегося металла, также способны обеспечить пассивацию металла. Именно этим объясняется защита меди и ее сплавов во мн. средах ингибиторами класса азолов (бензотриазолом, бензимидазолом и др.). В случае образования прочной связи органические ингибиторы коррозии с металлом, сопровождающейся гидрофобизацией его поверхности, пассивация металла м. б. вызвана самой адсорбцией ингибиторы коррозии
Связь эффективности различных ингибиторов коррозии с их химической структурой описывается на основе принципа линейности свободной энергии при варьировании, например, заместителя в молекуле (см. Корреляционные соотношения). Часто наблюдаемая инверсия знака эмпирического параметра r в уравнениях типа Гаммета или Тафта объясняется различной природой адсорбционной связи металл ингибиторы коррозии или сменой лимитирующей стадии гетерогенного процесса. При постоянном реакц. центре в молекуле ингибиторы коррозии, которым обычно является полярная группа, варьирование заместителя изменяет защитное действие. Это изменение м. б. представлено в виде суммы независимых составляющих взаимодействие заместителя с реакционным центром электронных, стерических и сольватационных. Соотношение вкладов этих составляющих, как и тип электронного взаимод. (индукционное, мезомерное), зависит от природы металла, ингибиторы коррозии и растворителя
Специфичность действия ингибиторы коррозии во многом определяется рН среды. Выделяют следующие типы ингибиторов коррозии: 1. Ингибиторы кислотной коррозии. Применяются при кислотном травлении и очистке поверхности металлич. изделий; для повышения эффективности химических источников тока; для защиты оборудования и трубопроводов газо-, нефтедобывающей или перерабатывающей промышленности. Обычно используют катодные или смешанные ингибиторы коррозии, существенно замедляющие выделение Н2. Среди них наиболее эффективны амиды и амины или их производные, в т.ч. гетероалкилированные, четвертичные соединения аммония и фосфония, высокомол. и ацетиленовые спирты, некоторые альдегиды и мн. серосодержащие соединения. 2. Ингибиторы для нейтральных сред. Защищают различные системы охлаждения и пром. водоснабжения, емкости балластной морской воды на судах и плавучих доках; предотвращают коррозию металлич. изделий при хранении и транспортировке. В последнем случае ингибиторы коррозии наносят на поверхность металла в виде раствора или вводят как компонент лакокрасочного или воскового покрытия (контактные ингибиторы коррозии). Так называемые летучие ингибиторы коррозии насыщают своими парами замкнутое пространство и адсорбируются на металле. В нейтральных средах шире, чем в кислых, применяют анодные и смешанные ингибиторы коррозии, способствующие образованию устойчивого пассивного состояния металла благодаря облагораживанию потенциала питтингообразования. Такими ингибиторами коррозии являются хроматы, фосфаты, молибдаты, нитриты и другие соли неорг. кислот, алкил- или арилкарбоксилаты, аминокислоты, сульфонаты и алкилфосфаты. Хотя поверхностная активность ингибиторы коррозии однозначно не характеризует его эффективность, лучшую защиту обеспечивают анионы орг. кислот с числом углеродных атомов порядка 10-12, способные образовывать полимолекулярные адсорбц. слои. При высоких степенях заполнения q тормoзится и диффузионная стадия процесса - подвод О2 к металлу, которая часто лимитирует катодную реакцию. Эффективными катодными ингибиторами коррозии в некоторых средах являются катионы металлов, связывающиеся в малорастворимые гидроксиды (Zn2+, Ca2+ и др.), а также их комплексные соед., в первую очередь с полифосфатами и фосфонатными комплексонами. 3. Ингибиторы щелочной коррозии. Используются при щелочной обработке амфотерных металлов, в моющих составах, для уменьшения саморазряда щелочных хим. источников тока, защиты выпарного оборудования. Здесь адсорбц. ингибиторы коррозии применяют редко, но их сочетание с катионами или комплексонатами некоторых металлов способно резко повысить эффективность защиты.
Большое число используемых ингибиторы коррозии обусловлено не только недостаточной универсальностью их защитного действия, но и жесткими требованиями технол., экономич. и экологич. характера, существенно различающимися в конкретных случаях применения. Так, ингибиторы кислотной коррозии должны одновременно препятствовать наводороживанию металла и уносу паров травильных ванн, не замедлять удаление окалины, быть устойчивыми к воздействию окислителей, не ухудшать сцепление разл. покрытий с металлом при их послед. нанесении и т.п. Высокое давление насыщ. паров некоторых ингибиторы коррозии, полезное в определенных пределах для борьбы с атмосферной коррозией, недопустимо при использовании этих ингибиторы коррозии в оборотных охлаждающих системах, где они должны обладать антинакипным и бактерицидным действием. Необходимость совместимости ингибиторов коррозии с компонентами среды очевидна, но ее трудно достичь без варьирования состава ингибиторов коррозии при их применении, например, в водно-органических антифризах, жесткой воде, растворах сильных кислот, моющих или полировальных составах. В связи с этим все шире используют комбинир. методы, в которых применение ингибиторы коррозии сочетают с электрохимической защитой (обычно катодной), нанесением защитных покрытий или применением таких конструкц. материалов, защита которых легче обеспечивается ингибиторы коррозии Эффективность комбинир. защиты часто превышает суммарный эффект, определяемый применением каждого из методов в отдельности.