новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Графит


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Графит (нем. Graphit, от греч. grapho-пишу), аллотропная модификация углерода, наиболее устойчивая при обычных условиях. Графит –распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита. Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллический графит , образовавшегося при метаморфизме углей. В кристаллических сланцах содержание графита составляет 3-20%, в магматических горных породах 3-50%, в углях 60-85%.

Кристаллическая структура. Кристаллическая решетка графита (рис. 1) гексагональная (а = 0,24612 нм, с = 0,67079 нм, z = 4, пространственная группа C6/mmc, теоретическая плотность 2,267 г/см3). Состоит из параллельных слоев (базисных плоскостей), образованных правильными шестиугольниками из атомов С. Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях (нижнем и верхнем); положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм.

Рис. 1. Кристаллическая решетка графита (природного цейлонского). А, В углеродные слои; пунктирными линиями показана элементарная кристаллическая ячейка.

Известна также модификация с ромбоэдрической решеткой (а = 0,3635 нм, = 39,49°, z = 4, пространственная группа R3m). Положение плоских слоев в ее структуре повторяется не через один слой, как в гексагональной модификации, а через два. В природном графите содержание ромбоэдрической структуры доходит до 30%, в искусственно полученных графитах наблюдается только гексагональная. При 2230-3030oС ромбоэдрич. графит полностью переходит в гексагональный.

Внутри слоя связи между атомами ковалентные, образованы 5р2-гибридными орбиталями. Взаимодействие между слоями осуществляются ван-дер-ваальсовыми силами. Для природного (цейлонского) графит межслоевое расстояние при нормальных условиях 0,3354 нм. Энергия связи между слоями гексагонального графит составляет 16,75 Дж/моль (15 °С), 15,1 Дж/моль (-134,15°С). Энергия связи С—С в слое 167,6 Дж/моль (1118°С).

В кристаллической решетке графита могут наблюдаться вздутия, искривления углеродных сеток и дефекты тонкого строения. В результате коагуляции вакансий могут образоваться микрополости диаметром до 3 мкм. Объединение отдельных участков этих дефектов приводит к возникновению краевых дислокаций. а также дислокационных петель величиной 0,1-1,0 мкм. Концентрация вакансий в графите увеличивается при его нагревании, например при 3650°С она достигает 0,5 атомных %. Дефекты могут возникать и при внедрении в решетку как углеродных атомов, так и гетероатомов.

Свойства. графит - жирное на ощупь вещество черного или серо-черного цвета с металлическим блеском. Его свойства зависят от происхождения или способа получения. Наиболее правильные кристаллы образует минерал цейлонских месторождений. Искусственно графит получают: нагреванием смеси кокса или каменного угля с пеком (так называемый ачесоновский графит ); термомеханическая обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы (рекристаллизованный графит ); пиролизом газообразных углеводородов (пирографит). К разновидностям искусственно полученного графита относят также доменный графит (выделяется при медленном охлаждении больших масс чугуна) и карбидный графит (образуется при термическом разложении карбидов).

При атмосферном давлении выше 2000 °С графит возгоняется, в парах обнаружены молекулы, содержащие от одного до семи атомов С. При высоких давлениях и нагревании образуется алмаз (рис. 2). Тройная точка (графит -жидкость-пар): температура 4130 К, давлении 12 МПа. наибольшую плотность (в зависимости от добавки 2,0-5,0 г/см3) имеет рекристаллизованный графит. Ниже приводятся термодинамические свойства ачесоновского графита: С°p 8,54 Дж/(моль*К), уравнение температурной зависимости: Сop = а + bТ- сТ2 - dT2 - еТ3 (288^130 К), где а = 4,824, Ъ = 28,627*10-3, с = 3,250*105, d = 13,812*10-6, e = 2,276* 10-9; 104кДж/моль, Soпл 24 Дж/(моль*К); 716,67 кДж/моль (288 К); S^98 5,74 Дж/(моль*К). Для графитов различного происхождения ок. -395 кДж/моль.

Рис. 2. Диаграмма состояния углерода: 1 и 2-области устойчивости соотв. графита и алмаза; 3 -область существования расплава углерода; 4 - линия равновесия графит-алмаз; 5, 6, 7, 8-линии плавления соотв. графита, метастабильного графита (приблизительная граница существования метастабильного графита в поле алмаза), алмаза и метастабильного алмаза в поле графита (приблизительная граница); А и В-области существования термодинамически неустойчивых алмаза и графита соответственно.

Высокая анизотропия свойств монокристаллов графит обусловлена строением его кристаллической решетки. В направлении базисных плоскостей тепловое расширение графит до 427 °С отрицательно (т.е. графит сжимается), его абсолютное значение с повышением температуры уменьшается. Выше 427 °С тепловое расширение становится положительным. Температурный коэффициент линейного расширения равен -1,2*10-6 К-1 (до -73oС), 0 (427 °С), 0,7*10-6 К-1 (выше 727°С). В направлении, перпендикулярном базисным плоскостям, тепловое расширение положительно, температурный коэффициент линейного расширения практически не зависит от температуры и превышает более чем в 20 раз среднее абсолютное значение этого коэффициента для базисных плоскостей. Температурный коэффициент линейного расширения поликристаллического графита очень быстро увеличивается в интервале —100-0 °С, затем рост его замедляется; для наиболее распространенных графит эти коэффициентв одинаковы и равны 0,2*10-8 К-1 в интервале 0-500°С и 0,4*10-9 К"1 выше 1000°С.

Для монокристаллов графит отношение значений теплопроводности в направлениях, параллельном и перпендикулярном базисным плоскостям (коэффициент анизотропии k), может достигать 5 и более. Теплопроводность [Вт/(м*К)] в направлении базисных плоскостей для графита : цейлонского 278,4 (k = 3,2), камберлендского 359,6 (k = 6), канадского 522,0 (k = 6), пирографита 475-2435 (k = 100-800). Наивысшей теплопроводностью (большей, чем у Си) обладает рекристаллизованный графит с добавками карбидов Ti и Zr. Теплопроводность искусственно полученного поликристаллического графита сильно зависит от его плотности и составляет 92,22, 169,94 и 277,44 Вт/(м*К) при плотности соотв. 1,41, 1,65 и 1,73 г/см3. На кривой температурной зависимости теплопроводности имеется максимум, положение и величина которого зависят от размеров и степени совершенства кристаллов.

Электрическая проводимость монокристаллов графит в направлении, параллельном базисной плоскости ( 0,385*10-6 Ом*м), близка к металлической, в перпендикулярном-в сотни раз меньше, чем у металлов (52,0*10-6 Ом*м). Величина принимает минимальное значение в интервале 0-1000 °С, положение минимума смещается в область низких температур тем больше, чем совершеннее кристаллическая структура. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Монокристаллы графита диамагнитны, магнитная восприимчивость велика в направлении, перпендикулярном базисным плоскостям ( -22*10-3), и незначительна в параллельном направлении ( -0,5*10-3). Знак коэффициента Холла меняется с положительного на отрицательный при 2100°С.

Прочностные свойства графита изменяются с увеличением температуры. Для большинства искусственных графитов с повышением температуры возрастает в 1,5-2,5 раза, достигая максимума при 2400-2800°С; увеличивается в 1,3-1,6 раза в интервале 2200-2300 °С; модули упругости и сдвига возрастают в 1,3-1,6 раза в интервале 1600-2200 °С. С повышением температуры до 3000 °С и выше прочностные свойства довольно резко снижаются и при 3200 °С приближаются к свойствам при 20 °С В интервале 20-2000 °С. Графит хрупок. В диапазоне 2200-2600 °С наблюдается большая остаточная деформация. достигающая 0,35-1,5% в зависимости от вида графита. Для искусственно полученного поликристаллического графит 9,8-14,7 МПа, 19,6-21,6 МПа, 24,5-29,4 МПа; коэффициент Пуассона 0,20-0,27; твердость по Бринеллю 392-588 МПа, по шкале Мооса 1-2. Наиболее высокие прочностные свойства имеет рекристаллизованный графит.

Хорошие антифрикционные свойства графита обусловлены легкостью скольжения одного углеродного слоя относительно другого под действием малых сдвиговых напряжений в направлении базисных плоскостей. Коэффициент трения по металлам (для рабочих скоростей до 10 м/с) составляют 0,03-0,05. Для пирографита под действием напряжений в направлении, перпендикулярном базисным плоскостям, он составляет 0,4-0,5; пирографит может быть использован в качестве фрикционного материала.

После облучения графита нейтронами его физические свойства изменяются: увеличивается, а прочность, модуль упругости, твердость, теплопроводность уменьшаются на порядок. После отжига при 1000-2000 °С свойства восстанавливаются до прежних значений. Графит обладает низким сечением захвата тепловых нейтронов (0,38*10-30 м2).

Характерная особенность искусственно полученного графит - его пористость, оказывающая существенное влияние практически на все свойства графита. Объем пор от 2-3% для пирографита до 80-85% для других видов графита. Для описания зависимости , модуля упругости, теплопроводности, р от пористости применяют эмпирическое выражение: где Рi и Рoi—свойства соответственно пористого и непористого графита, -общая пористость, -параметр для i-того свойства.

Графит весьма инертен при нормальных условиях. Окисляется О2 воздуха до СО2 выше 400°С, СО2-выше 500 °С. Температура начала реакций тем выше, чем совершеннее кристаллическая структура графита. Окисление ускоряется в присутствии Fe, V, Na, Cu и др. металлов, замедляется в присутствии С12, соед. фосфора и бора. С молекулярным азотом графит практически не реагирует, с атомарным при обычной температуре образует цианоген C2N2, в присут. Н2 при 800°C-HCN. В условиях тлеющего разряда графит с N2 дает парацианоген (CN)X, где х 2. С оксидами азота выше 400 °С образует СО2, СО и N2, с Н2 при 300-1000 °С-СН4. Галогены внедряются в кристаллическую решетку графита, давая соединения включения.

С большинством металлов и их оксидов, а также со многими неметаллами графит дает карбиды. Со всеми щелочными металлами, некоторыми галогенидами, оксифторидами, галогеноксидами, оксидами и сульфидами металлов образует соединения включения, с нитридами металлов выше 1000 °С- твердые растворы нитридов и карбидов, с боридами и карбидами - эвтектические смеси с температурами плавления 1800-3200°С. графит стоек к действию кислот, растворов солей, расплавов фторидов, сульфидов, теллуридов, органических соединений, жидких углеводородов и др., реагирует с растворами щелочей, жидкими окислителями и рядом хлор- и фторорганических соединений.

Наиболее химически и термически стоек пирографит. Он практически непроницаем для газов и жидкостей, при 600 °С его стойкость к окислению во много раз выше, чем у других графитов. В инертной среде пирографит работоспособен при 2000 °С в течение длительного времени.

Получение. Кристаллический графит извлекают из руд методом флотации, руды скрытокристаллический графит используют без обогащения.

Исходное сырье для получения графита - нефтяной или металлургический кокс, антрацит и пек. Отдельные частицы исходных углеродных материалов в результате карбонизации при обжиге связываются в монолитное твердое тело, которое затем подвергают графитации (кристаллизации). По одному из методов кокс или антрацит измельчают и смешивают пеком в определенных соотношениях, прессуют при давлении до 250 МПа, а затем подвергают обжигу при 1200°С и графитации при нагревании до 2600-3000 °С. Для уменьшения пористости полученный графит пропитывают синтетической смолой или жидким пеком, после чего снова подвергают обжигу и графитации. В производстве графита повышение плотности пропитку, обжиг и графитацию повторяют до пяти раз.

Из смеси, содержащей кокс, пек, природный графит и до 20% тугоплавких карбидообразующих элементов (напр., Ti, Zr, Si, Nb, W, Та, Мо, В), получают рекристаллизованный графит Исходную шихту нагревают в графитовых прессформах до температуры, на 100-150 °С превышающей температуру плавления эвтектической смеси карбида с углеродом, под давлением 40-50 МПа в течение нескольких десятков минут.

Пирографит получают пиролизом газообразных углеводородов с осаждением образовавшегося углерода из газовой фазы на подложку из графита. Осадки имеют кристаллическую структуру различной степени совершенства - от турбостратной неупорядоченной (пироуглерод) до упорядоченной графитовой (пирографит).

Применение. Графит используют в металлургии для изготовления плавильных тиглей и лодочек, труб, испарителей, кристаллизаторов, футеровочных плит, чехлов для термопар, в качестве противопригарной "присыпки" и смазки литейных форм. Он также служит для изготовления электродов и нагревательных элементов электрических печей, скользящих контактов для электрических машин, анодов и сеток в ртутных выпрямителях, самосмазывающихся подшипников и колец электромашин (в виде смеси с Al, Mg и Pb под назв. "графаллой"), вкладышей для подшипников скольжения, втулок для поршневых штоков, уплотнительных колец для насосов и компрессоров, как смазка для нагретых частей машин и установок. Его используют в атомной технике в виде блоков, втулок, колец в реакторах, как замедлитель тепловых нейтронов и конструкционных материалов (для этих целей применяют чистый графит с содержанием примесей не более 10-2% по массе), в ракетной технике - для изготовления сопел ракетных двигателей, деталей внешней и внутренней теплозащиты и др., в химическом машиностроении - для изготовления теплообменников, трубопроводов, запорной арматуры, деталей центробежных насосов и др., для работы с активными средами. Графит используют также как наполнитель пластмасс (см. Графитопласты), , компонент составов для изготовления стержней для карандашей, при получении алмазов. Пирографит наносится в виде покрытия на частицы ядерного топлива.

Наибольшее количество природного графит добывают в СССР, ЧССР, Южной Корее, Мексике, Австрии, ФРГ, лучшие сорта крупнокристаллического графита - на Цейлоне и Мадагаскаре. Производство графита сосредоточено в промышленно развитых странах (Великобритания, СССР, США, Франция, ФРГ, Япония) и достигает сотен тыс. тонн в год.

Лит.: Веселовский В. С, Угольные и графитовые конструкционные материалы, М., 1966; Шулепов С. В., Физика углеграфитовых материалов, М., 1972; Рекристаллизованный графит, М., 1979; Костиков В. И., Варенков А. Н., Взаимодействие металлических расплавов с углеродными материалами, М., 1981.

В. И. Костиков.


Дополнительная информация: "Графит: химические и физические свойства".


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIII
Контактная информация