новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Хлор


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Хлор (от греч. chloros - желто-зеленый; лат. Chlorum) C1, хим. элемент VII гр. периодич. системы, относится к галогенам; ат. н. 17, ат. м. 35,453. Прир. хлор состоит из смеси двух изотопов 35С1 (75,77%) и 37С1 (24,23%); ядра обоих изотопов имеют электрич. квадрупольный момент. Конфигурация внеш. электронной оболочки атома 3s25; степени окисления -1 (хлориды), +1 (гипохлориты), +3 (хлориты), +5 (хлораты)и +7 (перхлораты.; сродство к электрону 3,614 эВ; потенциал ионизации при последоват. переходе от С1° к С17+ 12,96776, 23,805, 39,90, 53,50, 67,80, 96,7 и 114,27 эВ; электроотрицательность по Полингу 3,16; ковалентный радиус С1° 0,099 нм; ионные радиусы (в скобках указаны координац. числа) Сl-0,167 нм (6), С15+ 0,026 нм (3), С17+ 0,022 нм (4), 0,041 нм (6). Молекула X. двухатомна, длина связи (в газе) r = 0,1987 нм. Имеет два связанных состояния и последнее -возбужденное с энергией 2,2109 эВ и r = 0,2435 нм. Эти состояния коррелируют с валентными состояниями атома хлора и . Сродство С12 к электрону 2,45 эВ, потенциал ионизации 11,48 эВ. Энергия диссоциации С12 239,240 кДж/ моль, равновесная термич. диссоциация С12 на атомы определяются константой К°(Т) =р2(Сl)/р(Сl2), где р - давление; lgК° = -6,8257 (1000 К), 0,2660 (2000 К), 1,9617 (3000 К).

Среднее содержание хлора в земной коре 1,7 x 10-2% по массе. Очень велики запасы хлора в мировом океане (среднее содержание 18,83 г/л); в виде NaCl (50-240 г/л) находится в подземных рассола хлор В земной коре хлор встречается в осн. в виде каменной соли (галита) NaCl, карналлита KCl x MgCl2 x 6H2O, сильвина КС1, сильвинита NaCl x KCl, каинита КС1 MgSO4 x3H2O, бишофита MgCl2 x 6H2O, тахгидрита 2MgCl2 x CaCl2 x 12H2O; другие менее распространенные минералы - кераргирит AgCl, бисмоцелит BiOCl, псевдокотуннит К2РbС14, баумлерит 2КС1 xСаС12. Содержание хлора в силикатных (каменных) метеоритах 0,09%, в железных - 0,36% (в осн. в виде FеС13), в вулканич. газах - до 1,3% (в виде С12, НС1, NaCl и др.). Содержание хлора в человеческом теле 0,25% (0,45% от сухой массы); в плазме крови 0,32-0,37%, в растениях зависит от вида и от состава почвы, например, табак содержит 2,3% хлора, морковь - 1,5%, зерно - 0,05%, картофель - 0,03%.

Свойства. хлор - желто-зеленый газ с резким удушающим запахом; т. пл. -100,98 °С, т. кип. -33,97 °С; тройная точка. температура 172,17 К, давление 1,392 кПа, dp/dT= 0,128 кПа/К; tкрит143,75 °С, ркрит7977,3 кПа, dкрит 0,573 г/см3; ур-ние температурной зависимости плотн. в интервале от -90 до 80 °С d= 1,6583346 - 0,002003753/(t + 80) + 0,0545596743 x (t+ 80)2 г/см3, при 25 °С плотн. 3,214 г/см3, плотн. твердого при -195 °С 2,13 г/см3; для С12: 33,949 Дж/(моль x К), 6,757 кДж/моль, 22,43 кДж/моль, 222,965 Дж/ (моль x К); для атома С1 (газ): 21,838 Дж/(моль x К), 121,302 кДж/моль, 165,076 Дж/(моль x К); для иона Сl-(газ): 20,786 Дж/(моль x К), 153,346 Дж/(моль x К), -233,670 кДж/моль, Сl- (в воде) -167,080 кДж/ моль; ур-ние температурной зависимости давления пара lnp = A + B/T+ClnT+DT+E(F-T)/FT (205-417 К), где А = 62,402508, В = -4343,5240, С = -7,8661534, D = = 1,0666308 x 10-2, E = 95,248723, F = 424,90; при 20 °С давление пара С12 0,669 МПа; 4,88 x 10-4 Па x с, ур-ние температурной зависимости = [0,00585(1 + 0,05878t - 0,05392t2)] х 10-5 Па x с (от -34 до -77 °С); x 10-5 Н/см 31,61 (-61,3 °С), 28,38 (-44,5 °С), 25,23 (-28,7 °С), ур-ние температурной зависимости = [21,70(1 - 0,007742t)] x 10-5 Н/см; 1,00152 (25 °С), 2,147 (-65,15 oC), 2,088 (-45,25 °С), 2,051 (-22,0 °С), 1,968 (0 °С), 1,54 (142 °С). Электродный потенциал С12 (газ, 0,1 МПа)/С1-воде коэф. активности ~ 1) 1,3583 В; изотермич. коэф. сжимаемости жидкого X. в интервале 0-10 МПа 0,0118%/МПа, адиабатич. коэф. сжимаемости газообразного хлора 5,73 x 10-5%/мм рт. ст.; температурный коэф. объемного расширения 21,9 x10-4 К-1 (298К); теплопроводность 0,079 Вт/(мx К) при 273 К. Кристаллизуется при -160 °С в ромбич. решетке, а = 0,624 нм, b = 0,448 нм, с = 0,826 нм, z = 4, пространств. группа Cmca, r = 0,1980 нм.

Хлор хорошо раств. в неполярных жидкостях. хуже - в воде. Р-римость, % по массе: в СС14 - 16,4 (0 °С), 8,46 (25 °С), бензоле - 24,7 (10 °С), 18,5 (20 °С), 14,7 (30 °С), воде - 1,44 (О °С), 1,07 (6 °С), 0,828 (15 oC), 0,711 (20 °С), 0,626 (25 °С), 0,449 (40 °С), 0,323 (60 °С). В конц. растворах NaCl растворимость С12 в неск. раз ниже, чем в воде. В водном растворе X. устанавливается равновесие:

Из водного раствора кристаллизуется клатрат С12 x 2О, давление его диссоциации 0,1 МПа при 9,6 °С. С хлорид-ионом молекулы С12 образуют в водном растворе ионы по реакции: + K = 0,19. Жидкий хлор сам может служить растворителем, например растворимость в С12, % по массе: ВС13 65,5 (-136,4 °С), SiCl4 28,8 (О °С), Т1С14 74,9 (20 °С).

Xлор - один из наиб. химически активных элементов, он непосредственно взаимод. со всеми металлами и большинством неметаллов (образуя хлориды), лишь реакция хлора с О2, N2 и Хе требует спец. методов активации - УФ облучения или электроразряда, в остальных случаях достаточно простого нагревания. Хлорирование наиб. пассивных к X. металлов начинается при след. температурах, °С: Ni 680, Mg 600, Pt 560, W 540, Сг 520, Mo 420, Та 380, Ag 260, Ti 250, Си и А1 240, Fe 215. Сера и фтор реагируют с X. при комнатной температуре, Si -при 200 °С, углерод в виде графита устойчив к хлору до 700 °С. Реакционная способность оксидов металлов по отношению к хлору (образуются хлориды) значительно ниже, чем у соответствующих металлов, и убывает в ряду: Na2O, Ag2O, CaO, PbO, CdO, MnO, NiO, ZnO, FeO, MgO, Fe2O3, ZnO2, TiO2, A12O3,

SiO2. В присут. углерод. температура хлорирования оксидов снижается.

Причина высокой химической активности Хлора - в сравнительной легкости образования атомов С1 из молекул С12, в высоком сродстве атома хлора к электрону (самое высокое среди атомов хим. элементов; выше, чем у фтора) и в высокой энергии связи хлора с большинством элементов. Стабильные соед. хлора - хлориды, гипохлориты, хлориты, хлораты. перхлораты. Действит. заряд на атоме С1 во всех соед. этих классов по абс. величине значительно ниже формального. Из-за высокого сродства атома С1 и хлоркислородных радикалов к электрону X. бывает анионом, входит в состав аниона ( , , ) или является лигандом в комплексных анионах и т. п.

Сильно экзотермич. реакция хлора с Н2 (С12 + Н2 2НС1) приводит к образованию хлористого водорода (см. Соляная кислота), она может протекать взрывообразно, особенно на свету: КПВ для системы Н2 - С12 11,5 - 95% по объему X. В присут. А1С13 реакция гладко протекает в темноте при 130 °С.

Прямое взаимод. хлора с N2 возможно только в электроразряде, единств. известный бинарный хлорид азота NC13 чрезвычайно взрывчат, получают его хлорированием NH3 или солей аммония (см. Азот). С кислородом хлор образует неск. хлора оксидов, наиб. важны С12О, С1О2, С12О6 и С12О7. Все оксиды X. нестабильны и взрывоопасны. С фтором хлор образует 3 бинарных фторида: C1F, C1F3 и C1F5, все они м. б. получены прямой реакцией между элементами. Попытка выделить высш. фторид хлора не привела к успеху, однако известны его производные, например кристаллич. Прямой реакцией С12 с др. галогенам. м. б. получены IC1, IС13 и BrCl. См. также Галогенфториды, Межгалогенные соединения. О взаимод. X. с орг. веществами см. Галогенирование

Получение. Практически весь производимый в мире хлор получают электрохим. методом - электролизом водного раствора NaCl или, гораздо реже, КС1. Другие продукты электролиза - щелочь (1,13 т NaOH на 1 т С12) и Н2. На получение 1 т хлора расходуют в зависимости от способа произ-ва от 2300 до 3700 кВт x ч электроэнергии, что составляет примерно 50% издержек произ-ва (в ценах на электроэнергию 1975), причем эта доля имеет тенденцию к росту. На производство хлора в США затрачивают ~2% всей вырабатываемой электроэнергии и 28% энергии, потребляемой в электрохим. промышленности.

Используют 3 метода электролиза растворов хлоридов: 1) ртутный; катод - Hg, хлор выделяется на твердом аноде и электродные пространства не разделены; 2) диафрагменный; оба электрода твердые, анодное и катодное пространство разделены фильтрующей диафрагмой; 3) мембранный; анодное и катодное пространства разделены катионообменной мембраной. Первые два метода существуют ок. 100 лет, третий применяют с 1975. При электролизе по второму методу непосредственно в электролизере образуется раствор NaOH и NaCl в молярном отношении 1:1. Упариванием этого "электролитич. щелока" получают товарный NaOH, содержащий 2-3,5% (в пересчете на NaOH) NaCl. Электролизом по первому способу получают амальгаму щелочного металла, при водном разложении которой образуются конц. растворы чистых щелочей NaOH или КОН. Возможность получения чистых щелочей, отвечающих требованиям, предъявляемым к реактивам, была осн. преимуществом ртутного метода до появления мембранного. Мембранный метод позволяет получать чистые щелочи без использования Hg, экологически менее опасен, требует меньшего расхода энергии и меньших капитальных вложений, поэтому доля X., полученного этим методом, непрерывно возрастает. Одновременно во всем мире падает доля ртутного метода. С 1986 Япония отказалась от ртутного метода.

До 60-х гг. в качестве материала для анодов в хлорном произ-ве использовался графит. Графитовые аноды подвергаются быстрому разрушению при электролизе, поэтому они заменены на металлические на основе Ti, Ti - Ru - Ir, Ti -Ir, Ti - Pt - Ir, покрытые активной массой из оксидов Ti и Ru. Оксиднорутениевые аноды обладают очень высокой коррозионной стойкостью (расход Ru ок. 0,1 г на 1 т С12) и обеспечивают хороший выход X. по току даже при высокой степени превращения NaCl в анодном пространстве.

Фильтрующие диафрагмы изготовлялись из асбестовой бумаги или волокна, ныне используют асбест с полимерными связующими, что предупреждает набухание диафрагмы, либо полимерные диафрагмы из пористой перфторир. пленки или волокна. Эти диафрагмы имеют срок службы более 500 сут.

Мембраны, непроницаемые для жидкости и газа, пропускающие лишь ионы Na+ и К+, имеют толщину 0,1-0,25 мм и размеры 2 х 2 м, материал мембран - сополимеры тетрафторэтилена с сульфонилированными или карбоксилированными перфторвиниловыми эфирами. Срок службы мембран ок. 2 лет. В лаб. условиях X. получают действием раствора НС1 на пиролюзит МnО2.

Определение. Методы обнаружения и определения X. основаны на его окислит. свойствахлор Для обнаружения X. в воздухе используют цветные реакции - иод-крахмальную, желтое окрашивание флуоресцеина в щелочной среде. Для определения X. применяют иодометрич. метод, спектрофотометрич. методы - с о-толидином, с диметил- и диэтил-n-фенилендиаминами, с метиловым оранжевым и др. Потенциометрич. методы определения X. основаны на количеств. переводе его либо в Сl-, либо в СlO- с послед. титрованием. В газовом потоке X. может быть определен кулонометрически на газоанализаторе "Атмосфера-2". Атомно-абсорбционный, рентгеноспектральный и активационный метод используют в осн. для определения X. в виде хлорида.

Применение. X. расходуется на произ-во окислительно-отбеливающих веществ - кальция гипохлорита, натрия гипохлорита, LiClO, хлорной извести, а также хлоридов мн. элементов, разл. хлорорг. продуктов (поливинилхлорида, хлоропренового каучука, растворителей, продуктов хлорирования углеводородов парафинового и ароматич. рядов), разл. хлорсодержащих пестицидов, некоторых веществ, не содержащих хлор,- сульфанила, глицерина, этиленгликоля и т. п., для водоочистки. В мире на производство орг. продуктов расходуется от 50 до 85% производимого хлора, на производство неорг. продуктов - 10-15%, в целлюлозно-бумажной промышленности - 2-15%, на очистку воды и др. санитарные нужды - 2-10%.

Мировое производство хлора в 1991-92 составило 40-45 млн. т.

Xлор весьма токсичен, во время 1-й мировой войны его использовали как боевое ОВ. Содержание С12 в воздухе 0,006 мг/л оказывает раздражающее действие на дыхат. пути, 0,012 мг/л переносится с трудом, концентрация выше 0,1 мг/л опасна для жизни: дыхание становится частым, судорожным, паузы продолжительными, остановка дыхания наступает через 5-25 мин. Вдыхание хлора более высокой концентрации может привести к мгновенной смерти в результате рефлекторного торможения дыхат. центра. ПДК в воздухе рабочей зоны 1,0 мг/м3, в атмосфере населенных пунктов разовая 0,1 мг/м3, среднесуточная 0,03 мг/м3.

Хранят хлор в стальных баллонах зеленого цвета.

Хлор открыл К. Шееле в 1774, элементарную природу X. установили в 1807-13 Г. Дэви, Ж. Гей-Люссак и Л. Тенар.

Лит.: Пасманик М. И., Сасс-Тисовский Б. А., Якименко Л. М., Производство хлора и каустической соды. Справочник, М., 1966; Фурман А. А., Неорганические хлориды. (Химия и технология), М., 1980; Фрумина Н. С, Лисенко Н. Ф., ЧерноваМ. А., Хлор, М., 1983.

© В. Я. Росоловский.

Дополнительная информация: "Хлор: химические и физические свойства".


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIII
Контактная информация