новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Нефть


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Нефть (через тур. neft, от перс. нефт; восходит к аккадскому напатум - вспыхивать, воспламенять), горючая маслянистая жидкость со специфическим запахом, распространенная в осадочной оболочке Земли; важнейшее полезное ископаемое. Нефть образуется вместе с газообразными углеводородами (см. Газы природные горючие)обычно на глубине более 1,2-2 км; залегает на глубинах от десятков метров до 5-6 км. Однако на глубинах св. 4,5-5 км преобладают газовые и газоконденсатные залежи с незначительным количеством легких фракций нефти (см. Газовые конденсаты. Газы нефтяные попутные). Максимальное число залежей нефть располагается на глубине 1-3 км. Вблизи земной поверхности нефть преобразуется в густую мальту, полутвердый асфальт и другие (см., например, Битуминозные пески. Битумы).

Общие сведения. Мировые запасы нефти, по прогнозу, достигают 250-270 млрд. т (1985), разведанные запасы приведены в табл. 1. Месторождения нефти выявлены на всех континентах (кроме Антарктиды) и на значительной площади прилегающих акваторий (всего около 30 тыс., из которых 15-20% газонефтяные). Однако эти скопления нефти распределены по странам и регионам крайне неравномерно. Практическое значение имеют залежи с извлекаемыми запасами от сотен тысяч тонн и более; обычно извлекаемые запасы месторождений-миллионы тонн, очень редко - миллиарды тонн. Примерно 85% нефть добывается на крупнейших месторождениях, составляющих 5% от общего их числа. Современными методами можно извлечь до 70% заключенной в пласте нефти при среднем коэффициенте извлечения 0,3-0,4, то есть извлекаемые запасы составляют только 30-40% от общего количества нефть на данном месторождении.

Табл. 1.-МИРОВЫЕ ЗАПАСЫ И ДОБЫЧА НЕФТИ И ГАЗОВОГО КОНДЕНСАТА *


* "Petroleum Economist", 1990, vol. 57, № 1, p. 27.

** Без СССР, Китая и Румынии.

В СССР нефть добывают в традиционных нефтеносных районах (Баку, Грозный, Эмба, Ухта), Волго-Уральском регионе (Башкирия и Татарстан, Пермская, Самарская и др. области) и новых районах (Зап. Сибирь, полуостров Мангышлак, Белоруссия, Прибалтика и др.). Наиболее известные отечественные нефтяные месторождения приведены в табл. 2, а месторождения в зарубежных странах - в таблицах 3.

Практически всю добываемую в мире нефть извлекают из земных недр с помощью буровых скважин. С начала промышленной добычи нефть (конец 1850-х гг.) до конца 1985 в мире было извлечено около 76 млрд. т (включая газовый конденсат), из которых более 50% приходится на 1965-85. Динамика мировой добычи нефти (млрд. т): 1900-0,02; 1950-ок. 0,55; 1960-св. 1; 1970-св. 2; 1985-90-ок. 3 (в год). Динамика добычи нефти и газового конденсата в СССР (млн. т): 1940-31,1; 1950-39,2; 1960-148,5; 1970-352,5; 1975-491; 1985-595; 1986-634; 1987-624; 1988-624; 1989-608.

В последние десятилетия поиск, разведку и разработку скоплений нефть ведут в Мировом океане, на шельфах окраинных и внутренних морей, где открыто около 1700 месторождений. Запасы нефть на шельфах океанов составляют 55 млрд. т, добыча нефть-около 30% от ее мировой добычи (1986).

Происхождение. Выдвинуто много теорий, объясняющих происхождение нефть, из них основные-органическая (биогенная) и неорганическая (абиогенная). Большинство ученых в СССР и за рубежом являются сторонниками концепции биогенного образования нефти. Еще М. В. Ломоносов ("О слоях земных", 1763) высказал идею о дистилляционном происхождении нефти под действием теплоты из орг. вещества, которое дает начало и каменным углям. Теорию образования нефть из сапропеля (органические илы) впервые предложил Г. Потонье (1904-05). Наибольший вклад в развитие органической теории принадлежит И. М. Губкину ("Учение о нефти", 1932).

Согласно органической теории, нефть - жидкая гидрофобная фаза продуктов фоссилизации (захоронения) орг. вещества (керогена) в водно-осадочных отложениях. Нефтеобразование представляет собой многостадийный, весьма продолжительный (обычно много млн. лет) процесс, начинающийся еще в живом веществе. Обязательное его требование-существование крупных областей погружения земной коры (осадочных бассейнов), в ходе развития которых породы, содержащие орг. вещество, могли достичь зоны с благоприятными термобарическими условиями для образования нефти. Основное исходное вещество нефти - планктон, обеспечивающий наибольшую биопродукцию в водоемах и накопление в осадках орг. вещества сапропелевого типа, характеризуемого высоким содержанием водорода. Генерирует нефть также гумусовое вещество, образующееся главным образом из растительных остатков.

К неорганическим теориям происхождения нефть относятся минеральная, или карбидная (Д.И.Менделеев, 1877), космическая (В. Д. Соколов, 1889), вулканическая (Ю. Кост, 1905). Общее для этих и менее распространенных неорганических теорий-синтез углеводородов путем взаимодействия карбидов металлов с водой и кислотами (идея Менделеева), а также по схеме Фишера-Тропша из водорода и оксидов углерода.

Физические свойства. Нефть - жидкость от светло-коричневого (почти бесцветного) до темно-бурого (почти черного) цвета. Средняя молярная масса 220-300 (редко 450-470). Плотность 0,65-1,05 (обычно 0,82-0,95) г /см3; нефть, плотность которой ниже 0,83, наз. легкой, 0,831-0,860-средней, выше 0,860-тяжелой. нефть содержит большое число разных орг. веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно > 28 °С, реже >= 100 °С в случае тяжелых нефтей) и фракционным составом-выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом (см. ниже) в определенных температурных пределах, как правило до 450-500 °С (выкипает ~ 80% объема пробы), реже 560-580 °С (90-95%). Температура застывания от - 60 до + 30 °С; зависит преимущественно от содержания в нефти парафина (чем его больше, тем т. заст. выше) и легких фракций (чем их больше, тем эта температура ниже). Вязкость изменяется в широких пределах (см., например, табл. 2); определяется фракционным составом нефти и ее температурой (чем она выше и больше количество легких фракций, тем ниже вязкость), а также содержанием смолисто-асфальтеновых веществ (чем их больше, тем вязкость выше). Уд. теплоемкость 1,7-2,1 кДж/(кг.К); уд. теплота сгорания (низшая) 43,7-46,2 МДж/кг; диэлектрическая пpоницаемость 2,0-2,5; электрическая проводимость 2.10-10-0,3 х х 10-18 Ом-1.см-1. Нефть - легковоспламеняющаяся жидкость; температура вспышки от -35 до + 120°С (зависит от фракционного состава и содержания в нефть растворенных газов). Нефть растворима в органических растворителях, в обычных условиях не растворим в воде, но может образовывать с ней стойкие эмульсии (см. Обезвоживание и обессиливание нефти).

Химический состав. Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть - жидкие углеводороды (> 500 или обычно 80-90% по массе) и гетероатомные органические соединения (4-5%), преим. сернистые (около 250), азотистые (> 30) и кислородные (около 85), а также металлоорганические соединения (в основном ванадиевые и никелевые); остальные компоненты - растворенные углеводородные газы (С14, от десятых долей до 4%), вода (от следов до 10%), минер. соли (гл. обр. хлориды. 0,1-4000 мг/л и более), растворы солей органических кислот и других, механические примеси (частицы глины, песка, известняка).

Углеводородный состав: в основном парафиновые (обычно 30-35, реже 40-50% по объему) и нафтеновые (25-75%), в меньшей степени-соединения ароматического ряда (10-20, реже 35%) и смешанного, или гибридного, строения (например, парафино-нафтеновые, нафтено-ароматические). Гетероатомные компоненты: серосодержащие-Н2S, меркаптаны. моно- и дисульфиды, тиофены и тиофаны, а также полициклические и т.д. (70-90% концентрируется в остаточных продуктах-мазуте и гудроне); азотсодержащие - преимущественно гомологи пиридина. хинолина. индола. карбазола. пиррола. а также порфирины (б.ч. концентрируется в тяжелых фракциях и остатках); кислородсодержащие-нафтеновые кислоты, фенолы. смолисто-асфальтеновые вещества и др. (сосредоточены обычно в высококипящих фракциях). Элементный состав (%): С-82-87, H-11-14,5, S-0,01-6 (редко до 8), N-0,001-1,8, О-0,005-0,35 (редко до 1,2) и др. Всего в нефти обнаружено более 50 элементов. Так, наряду с упомянутыми в нефти присутствуют V(10-5-10-2%), Ni(10-4-10-3%), Cl (от следов до 2 х х 10-2%) и т.д. Содержание указанных соединений и примесей в сырье разных месторождений колеблется в широких пределах, поэтому говорить о среднем химическом составе нефть можно только условно.

Методы исследований. Для оценки качества нефти с целью правильного выбора наиболее рациональной схемы ее переработки применяют комплекс методов (физические, химические, физико-химические и специальные), реализуемых по различным программам. В СССР принята (1980) так называемая Е д и н а я у н и ф и ц и р. п р о г р а м м а исследований, предусматривающая последовательное определение общих характеристик сырой нефти, ее фракционного и химического состава, а также товарных свойств отдельных фракций.

К общим характеристикам нефть, определяемым по стандартным методикам, относят плотность, вязкость, температуру застывания и иные физ.-хим. показатели, состав растворенных газов и количеств. содержание смол, смолисто-асфальтеновых веществ и твердых парафинов (табл. 2 и 3).

Основной принцип последующего исследования нефти сводится к комбинированию методов ее разделения на компоненты с постепенным упрощением состава отдельных фракций, которые затем анализируют разнообразными физико-химическими методами. Наиболее распространенные методы определения первичного фракционного состава нефти - различные виды дистилляции (перегонки) и ректификации. По результатам отбора узких „(выкипают в пределах 10-20°С) и широких (50-100°С) фракций строят т. наз. кривые истинных температур кипения (ИТК) нефть, устанавливают потенц. содержание в них отдельных фракций, нефтепродуктов или их компонентов (бензиновых, керосино-газойлевых, дизельных, масляных дистиллятов, а также мазутов и гудронов), углеводородный состав, др. физ.-хим. и товарные характеристики. Дистилляцию проводят (до 450 °С и выше) на стандартных перегонных аппаратах, снабженных ректификационными колонками (погоноразделительная способность соответствует 20-22 теоретическим тарелкам). Отбор фракций, выкипающих до 200 °С, осуществляется при атм. давлении, до 320 °С-при 1,33 кПа, выше 320 °С- при 0,133 кПа. Остаток перегоняют в колбе с цилиндрическим кубом при давлении около 0,03 кПа, что позволяет отбирать фракции, выкипающие до 540-580 °С.

Выделенные в результате дистилляции фракции подвергают дальнейшему разделению на компоненты, после чего различными методами устанавливают их содержание и определяют свойства. В соответствии со способами выражения состава нефти и ее фракций различают групповой, структурно-групповой, индивидуальный и элементный анализ. При групповом анализе определяют отдельно содержание парафиновых, нафтеновых, ароматических и смешанных углеводородов (табл. 4-6). При структурно-групповом анализе углеводородный состав нефтяных фракции выражают в виде среднего относительного содержания в них ароматических, нафтеновых и других циклических структур, а также парафиновых цепей и иных структурных элементов; кроме того, рассчитывают относит. количество углерода в парафинах, нафтенах и аренах. Индивидуальный углеводородный состав полностью определяется только для газовых и бензиновых фракций. При элементном анализе состав нефть или ее фракций выражают количествами (в %) С, Н, S, N, О, а также микроэлементов.


Табл. 4.-ГРУППОВОЙ УГЛЕВОДОРОДНЫЙ СОСТАВ БЕНЗИНОВЫХ И КЕРОСИНО-ГАЗОЙЛЕВЫХ ФРАКЦИЙ НЕФТЕЙ ОСНОВНЫХ МЕСТОРОЖДЕНИЙ СССР


* Сумма парафинов и нафтенов.

Основной метод отделения ароматических углеводородов от парафиновых и нафтеновых и разделения аренов на моно- и полициклические-жидкостная адсорбция хроматография (поглотителем обычно служит так называемый двойной сорбент, содержащий в соотношении 1:1 Аl2О3 и активированной крупнопористый силикагель). Углеводородный состав многокомпонентных нефтяных смесей как узкого, так и широкого диапазона расшифровывают сочетанием хроматографических (в газовой или жидкой фазе), адсорбционных (см. Адсорбционная очистка)и др. методов разделения со спектральными (комбинационное рассеяние, ИК и УФ спектроскопия. ЯМР) и масс-спектрометрическими методами исследований.

Для выделения из нефти и ее фракций гетероатомных соединений и микроэлементов применяют жидкостную экстракцию, комплексообразование их с солями металлов, а также абсорбционные, адсорбционные и хроматографические методы. Для анализа этих соединений используют потенциометрическое титрование, электронную микроскопию, ИК спектроскопию, ЭПР, ЯМР и масс-спектрометрию.

В заключение единой унифицированной программы стандартными методами определяют товарные характеристики нефтяных фракций как топлив и базовых смазочных масел и сырья для вторичных процессов нефтепереработки.

В связи с наметившейся в мире тенденцией дальнейшего углубления переработки нефти все возрастающее значение приобретает ее детализированный а н а л и з, особенно высококипящих фракций и остаточных продуктов (мазутов и гудронов). По схеме углубленного исследования (табл. 7), принятой в СССР, смесь тяжелых углеводородов и остатков, предварительно очищенную от асфальтенов. подвергают адсорбционному разделению с помощью двойного сорбента на парафино-нафтеновые и ароматические улеводороды (с последними удаляются также серосодержащие соединения). Выделенные группы соединений анализируются затем упомянутыми выше методами, из которых самый эффективный-газовая хромато-масс-спектрометрия.

За рубежом наиболее распространена схема детализированного анализа нефтяных смесей, разработанная Американским горным бюро и Американским нефтяным институтом (метод ISBM-API). По этой схеме, наряду с адсорбционным разделением нефтяной смеси на углеводороды, от них также отделяют с применением соответствующей ионообменной и так называемой лигандообменной хроматографии нафтеновые кислоты и азотсодержащие вещества в виде комплексов с различными соединениями.

Табл. 5.-ГРУППОВОЙ УГЛЕВОДОРОДНЫЙ СОСТАВ МАСЛЯНЫХ ФРАКЦИЙ НЕФТЕЙ ОСНОВНЫХ МЕСТОРОЖДЕНИЙ СССР


Результаты исследований закладываются в банки данных информационно-поисковых систем, с помощью которых можно быстро устанавливать типы изучаемых нефть (по физико-химическим характеристикам и сравнению с аналогами), оценивать выходы и свойства любых заданных (по температурам кипения) фракций и др.

Табл. 6.-ГРУППОВОЙ УГЛЕВОДОРОДНЫЙ СОСТАВ БЕНЗИНОВЫХ И КЕРОСИНО-ГАЗОЙЛЕВЫХ ФРАКЦИЙ НЕФТЕЙ НЕКОТОРЫХ ЗАРУБЕЖНЫХ МЕСТОРОЖДЕНИЙ


Классификация. Данные, полученные в результате исследований нефти, лежат в основе их различных классификаций. В СССР принята (1981) так называемая технологическая классификация, или индексация (по качеству производимых нефтепродуктов), в соответствии с которой каждой нефть присваивается индекс из пяти цифр. Нефть делят на классы (по содержанию S): 1-не более 0,5%, 2-0,51-2,0%, 3- > 2,0%; типы (по содержанию фракций, выкипающих до 350°С): 1-не менее 55%, 2-45,0-54,9%, 3- < 45%; группы (по суммарному содержанию базовых масел в расчете на нефть): 1-не менее 25%, 2-15,0-24,9%, 3-15,0-24,9%, 4- < 15,0%; подгруппы (по индексу вязкости базовых масел): 1-95, 2-90-95, 3-85,0-89,9, 4- < 85; виды (по содержанию твердых парафинов): 1-не более 1,5%, 2-1,51-6,00, 3- > 6,00. Используя классификацию, можно составить индекс для любой промышленной нефти. Примеры: туймазинская -2.2.3.3.2, узенская-1.3.3.1.3. Эту классификацию применяют для сортировки нефти при направлении ее на переработку по соответствующей схеме (топливной или масляной), учета качества при планировании добычи, транспорта, хранения и переработки, а также при проектировании новых нефтеперерабатывающих предприятий (НПЗ). За рубежом нефть классифицируют в основном по плотности и содержанию серы.

Подготовка и переработка. Перед поступлением сырой нефти с нефтепромыслов на НПЗ от нее отделяют пластовую воду и минеральные соли. Кроме того, для снижения потерь ценных углеводородов при транспортировании и хранении, а также обеспечения постоянного давления паров нефть при подаче на НПЗ ее подвергают стабилизации, то есть отгоняют пропан-бутановую, а иногда частично и пентановую фракцию углеводородов (см., например, Газы нефтепереработки.

Первичная переработка нефти состоит в ее перегонке, в результате которой, в зависимости от профиля предприятия отбирают так называемые светлые (бензины, керосины, реактивные и дизельные топлива) и темные (мазут, вакуумные дистилляты, гудрон) нефтепродукты. Для увеличения выходов и повышения качества светлых нефтепродуктов, а также получения нефтехимического сырья нефть направляют на вторичную переработку, связанную с изменением структуры входящих в ее состав углеводородов. Удаление нежелательных компонентов (сернистых, смолистых и кислородсодержащих соединений, металлов, а также полициклических ароматических углеводородов) достигается очисткой нефтепродуктов. Для дальнейшего повышения качества полученных нефтепродуктов к ним добавляют специальные вещества.

Влияние группового углеводородного состава нефтепродуктов на их свойства. Преобладание отдельных групп углеводородов в различных фракциях нефти неодинаково сказывается на их товарных свойствах. Так, бензиновые фракции, содержащие значительные количества изопарафиновых и ароматических углеводородов, обладают высоким, а при повышенном количестве парафинов нормального строения - низким октановым числом; последнее увеличивается для изопарафинов с возрастанием разветвленности цепи при одном и том же числе атомов углерода (табл. 8).

Дизельные топлива, в которых преобладают нормальные парафиновые углеводороды, отличаются легкой воспламеняемостью (характеризуемой цетановым числом), ухудшающейся с увеличением в них числа боковых цепей. При одинаковой разветвленности моноциклические нафтены имеют, как правило, более высокие цетановые числа, чем ароматические углеводороды; с возрастанием содержания циклов в молекулах цетановое число снижается (табл. 9). Наиболее трудно воспламеняются ароматические бициклические углеводороды. Однако присутствие значительных количеств н-парафинов резко ухудшает низкотемпературные свойства дизельных и реактивных топлив. В последних желательно наличие нафтенов, обладающих высокой плотностью и низкой температурой начала кристаллизации. Содержание в реактивных и дизельных топливах ароматических углеводородов необходимо ограничивать, так как они ухудшают фотометрические свойства и увеличивают нагарообразование по сравнению с другими группами углеводородов, особенно парафиновыми.

Высокими индексами вязкости обладают базовые масляные фракции, в состав которых входят преим. нафтены с небольшим содержанием циклов в молекулах и длинными малоразветвленными парафиновыми цепями. Нафтеновые и ароматические углеводороды с относительно высоким содержанием циклов имеют более высокие плотность и вязкость (значительно возрастающую при понижении температуры), чем циклические углеводороды, которые кипят в тех же температурных пределах, но с малым числом циклов (табл. 10).

Применение. нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля ее в общем потреблении энергоресурсов составляет 48% (1985). Однако в перспективе эта доля будет уменьшаться вследствие возрастания применения атомной и иных видов энергии.

В связи с быстрым развитием в мире химической и нефтехимической промышленности потребность в нефть увеличивается не только с целью повышения выработки топлив и масел, но и как источника ценного сырья для производства синтетических каучуков и волокон, пластмасс, ПАВ, моющих ср-в, пластификаторов, присадок, красителей и др. (более 8% от объема мировой добычи). Среди получаемых из нефть исходных веществ для этих производств наибольшее применение нашли: парафиновые углеводороды-метан, этан, пропан, бутаны, пентаны, гексаны, а также высокомолекулярные (10-20 атомов углерода в молекуле); нафтеновые - циклогексан; ароматические углеводороды - бензол, толуол, ксилолы, этилбензол; олефиновые и диолефиновые - этилен, пропилен, бутадиен; ацетилен.

Истощение ресурсов нефти, рост цен на нее и другие причины вызвали интенсивный поиск заменителей жидких топлив.

Лит.: Наметкин С. С., Химия нефти, М., 1955; Нефти СССР. Справочник, под ред. 3. В. Дриацкой, М.А. Мхчиян, Н.М. Жмыховой, т. 1-4, М., 1971-74; Губкин И. М., Учение о нефти, 3 изд., М., 1975; Нефти и газы месторождений зарубежных странефть Справочник, под ред. В. И. Высоцкого и А.Н. Гусевой, М., 1977; Хант Д., Геохимия и геология нефти и газа, пер. с англ., М., 1982; Камьянов В. Ф., Аксенов В. С, Титов В. И., Гетеро-атомные компоненты нефтей, Новосиб., 1983; Полякова А. А., Молекулярный масс-спектральный анализ органических соединений, М., 1983; Петров А. А., Углеводороды нефти, М., 1984; Химия нефти, под ред. 3. И. Сюняева, Л., 1984; Геодекян А. А., Забанбарк А., Геология и размещение нефтегазовых ресурсов в Мировом океане, М., 1985; Эрих В. Н. Расина М. Г.Рудин М.Г., Химия и технология нефти и газа, 3 изд., Л., 1985; Справочник нефтепереработчика, под ред. Г. А. Ластовкина, Е. Д. Радченко и М.Г. Рудина, Л., 1986; Горная энциклопедия, т. 3, М., 1987, 452-484; Нефть СССР (1917-1987), под ред. В. А. Динкова, М., 1987; Химия нефти и газа, под ред. В.А.Проскурякова, А. Е. Драбкина, Л., 1989

Э. Ф. Каминский, Н. М. Жмыхова, М. А. Мхчиян




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация