новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Органических веществ анализ


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Органических веществ анализ (устар.-орг. анализ), качеств. и количеств. определение состава орг. веществ и установление их строения.

При определении качеств. состава орг. веществ используют разнообразные методы, основанные на хим. реакциях, сопровождающихся образованием продуктов с характерными свойствами (цвет, запах, температура плавления и др.), и на измерении физ. и физ.-хим. (хроматографич., спектральных и др.) характеристик идентифицируемых соединений.

При количеств, анализе орг. веществ устанавливают кол-во реагента, вступившего в реакцию с определяемыми орг. соед., или измеряют разл. физ. и физ.-хим. характеристики, связанные с кол-вом определяемого соединения.

органических веществ анализ включает элементный анализ, изотопный анализ. структурно-групповой (включая функц. и стереоспецифич.), молекулярный анализ. фазовый анализ и структурный анализ.

Исторически первыми были разработаны способы элементного анализа орг. веществ (А. Лавуазье, кон. 18 в.), основанные на их окислении и гравиметрич., титриметрич. или газометрич. определении образовавшихся простых соед. отдельных элементов. Первые методы элементного микрохимического анализа (микроанализа) разработал Ф. Прегль в нач. 20 в. Со 2-й пол. 20 в. для элементного анализа веществ широко применяют автоматич. анализаторы, основанные на сожжении анализируемой пробы орг. вещества и газохромато-графич. разделении и определении продуктов сожжения. Анализатор снабжают компьютером и автоматич. системой ввода проб.

Изотопный анализ орг. веществ имеет целью определение в них содержания отдельных изотопов. а также определение соотношения одних и тех же орг. соед., содержащих разные изотопы или их сочетания. Для этого чаще всего применяют масс-спектрометрию или многократную газо-жидкостную хроматографию (напр., при разделении обычных и дейтерир. форм метана или бензола). Наиб. эффективна хромато-масс-спектрометрия.

Большинство методов функционального анализа основано на взаимод. отдельных функц. групп орг. соед. с подходящими реагентами. Такие реакции бывают избирательными или ограниченно избирательными, т. е. характерны соотв. только для одной или неск. функц. групп.

Чаще всего используют реакции, связанные с образованием или исчезновением кислот, оснований, окислителей. восстановителей. воды, газов. реже-осадков и окрашенных веществ. Образовавшиеся кислоты и основания определяют кислотно-основным титрованием в водной или неводной среде. В неводной среде возможно раздельное потенциометрич. титрование кислоты и основания разной силы при совместном присутствии.

В случае окислит.-восстановит. реакций, скорость которых невелика, обычно используют обратное титрование, т. е. оттитровывают избыток реагента. На образовании или поглощении воды в реакциях орг. соед. основано определение мн. функц. групп с помощью Фишера реактива (см. также Акваметрия).

Методы, основанные на реакциях, которые сопровождаются выделением или поглощением газа, используют редко, т. к. измерение объема или давления обычно требует громоздкой аппаратуры.

На образовании осадков основаны гравиметрич. методы определения небольшого числа функц. групп. Малорастворимые соед., используемые в этих случаях, представляют собой, как правило, металлич. соли карбоновых и сульфоно-вых кислот, соли орг. оснований, комплексные соед. (в т.ч. хелатные).

Образование окрашенных соед. часто достаточно специфично и позволяет избирательно определять функц. группы фотометрич. методами. Получили распространение (особенно в микроанализе) реакции, приводящие к образованию флуоресцирующих соед., т. к. чувствительность определения функц. группы в этом случае достаточно велика.

Особой разновидностью функцион. анализа считают методы, основанные на предварит. взаимодействии определяемого вещества с реагентами и определении образовавшегося продукта. Напр., ароматич. углеводороды после нитрования можно определять полярографически, а реакция между аминогруппой и нафталинсульфохлоридом позволяет определять амины флуориметрически.

Ниже приведены примеры наиб. часто применяемых методов функцион. анализа.

Определение активного водорода в спиртах. аминах, амидах, карбоновых и сульфоновых кислотах, меркаптанах и суль-фонамидах основано на их взаимод. с реактивами Гриньяра (обычно с метилмагнийиодидом; см. Церевитинова метод)или с LiAlH4 и измерении объема выделившегося метана или водорода соответственно. Активный водород в ацетилене и его гомологах определяют по реакции с солями Ag(I), Hg(I) или Cu(I) с послед, титриметрич. определением выделившихся кислот.

Соединения с ненасыщ. углерод-углеродными связями чаще всего бромируют, иодируют или гидрируют. В первых двух случаях непрореагировавший Вг2 или I2 определяют иодометрически, а при гидрировании измеряют объем поглощенного Н2. Число двойных связей можно установить по реакции присоединения солей ртути с послед. титрованием выделившейся кислоты.

При определении гидроксильных групп чаще всего применяют ацилирование с помощью уксусного, фталевого или пиромеллитового ангидрида, избыток которого оттитровывают. Можно использовать хлорангидриды кислот. Гидрокси-группы в фенолах обычно титруют растворами основании в неводной среде. Фенолы легко бромируются и сочетаются с солями диазония. поэтому фенолы оттитровывают растворами Вг2 или солей диазония либо приливают к исследуемому раствору бромид-броматную смесь, избыток которой устанавливают иодометрически (см. также Фалина реакция).

Углеводы можно определять окислением периодатом натрия и послед. титрованием избытка окислителя или образующихся кислот. Разработаны многочисл. разновидности этого метода (см., например, Малапрада реакция).

Для определения орг. пероксисоединений (в т. ч. пероксикислот) чаще всего используют их взаимод. с KI и послед. титрование выделившегося I2 раствором Na2S2O3.

Анализ алкоксисоединений заключается во взаимод. анализируемого вещества с иодистоводородной кислотой с образованием алкилиодидов (см. Цейзеля метод). Последние определяют разными методами - гравиметрически (в виде AgI) или титриметрически (иодометрия, кислотно-основное титрование). Аналогично можно определять и сложные эфиры карбоновых кислот. Для идентификации С14-алкоксигрупп образующиеся алкилиодиды превращают в четвертичные аммониевые соед., которые анализируют методами тонкослойной или бумажной хроматографии.

Определение эпоксигрупп основано на их реакции с хлористым водородом с образованием хлоргидринов; по завершении реакции избыток НСl оттитровывают раствором щелочи.

Для определения карбонильных соед. (альдегидов и кето-нов) наиб. часто применяют оксимирование, т. е. их превращение в оксимы при взаимод. с гидрохлоридом гидроксил-амина; выделившийся в результате реакции НСl оттитровывают раствором щелочи (конечную точку титрования устанавливают с помощью индикатора или потенциометрически). Существует большое число модификаций этого метода. Альдегиды можно определять также по реакции с бисульфитом Na с послед. кислотно-основным титрованием. Реже используют окисление альдегидов ионами Ag + , реакцию с гидразинами и образование оснований Шиффа.

Хиноны восстанавливают хлоридом Ti(III) или сульфатом V(II); избыток восстановителя определяют титриметрически. Хиноны можно определять также иодометрически.

Для определения карбоновых кислот и их солей наиб. часто применяют кислотно-основное титрование в неводных средах.

Для анализа производных карбоновых кислот разработано большое число методов. Ангидриды после их гидролиза до кислот титруют растворами щелочей. В случае анализа смеси кислоты и ее ангидрида кислотно-основным титрованием определяют сумму обоих веществ, а затем проводят реакцию ангидрида с морфолином или анилином и оттитровывают выделившиеся кислоты. В последнем случае можно также определять избыток основания титрованием раствором НСl. Аналогично определяют галогенангидриды или их смеси с кислотами. При этом вместо реакции с аминами часто используют взаимод. галогенангидрида со спиртом с послед. раздельным титрованием своб. карбоновой кислоты и выделившейся галогеново-дородной кислоты раствором щелочи.

Определение сложных эфиров карбоновых кислот основано на их гидролизе раствором щелочи, избыток которой оттитровывают раствором кислоты. Малые кол-ва сложных эфиров обычно определяют спектрофотометрически в виде Fе(Ш)-солей гидрокса-мовых кислот, образующихся при взаимод. сложных эфиров с гидроксиламином.

Для определения азотсодержащих орг. веществ предложено большое число методов. Соед., способные восстанавливаться (нитро-, нитрозо-, азосоединения), определяют титано- или ванадатометрически: добавляют избыток раствора соли Ti(III) или V(II) и непрореагировавший восстановитель от-титровывают раствором соли Fe(III).

Широкое применение при определении аминов находит титрование растворами кислот (обычно НСlО4) в неводной среде. Этот метод часто позволяет раздельно определять орг. и неорг. основания в смесях, а также орг. основания разной силы при совместном присутствии. Амины можно определять, как и гидроксипроизводные, по реакции их ацилирования. Для определения первичных ароматич. аминов часто используют титрование раствором в кислой среде, сопровождающееся образованием диазосоединения. Аналогичное титрование вторичных аминов приводит к их N-нитрозированию и также применяется в анализе. При микроанализе первичных ароматич. аминов образовавшиеся диазосоединения обычно подвергают сочетанию с соответствующими азосоставляющими и определяют образовавшийся краситель спектрофотометрически. В случае анализа смесей первичных, вторичных и третичных аминов чаще всего применяют титрование раствором НСlO4 в неводной среде исходной смеси (титруются все амины), смеси после ацетилирования уксусным ангидридом (титруются только третичные амины) и смеси после обработки ацетилацетоном или салициловым альдегидом (титруется сумма вторичных и третичных аминов).

Для определения солей арилдиазония раствором анализируемого вещества титруют навески азосоставляющей (З-метил-1-фенил-5-пиразолона, , м-фенилендиамина и др.) или прибавляют к анализируемому раствору раствор азосоставляющей, избыток которой оттитровывают раствором NaNO2 в кислой среде. В случае анализа диазосоединений возможно также применение газометрич. анализа, основанного на разложении исследуемого соед. с выделением N2, объем которого измеряют. Иногда, как и в случае анализа аминов, диазосоединения определяют по реакции сочетания с послед. спектрофотометрич. определением образовавшегося красителя.

Гидразины и тиолы обычно оттитровывают иодометрически. В случае тиолов можно использовать также взаимод. их с солями серебра или кислотно-основное титрование. Орг. сульфиды окисляют бромид-броматной смесью, избыток которой определяют титриметрически.

Широкое распространение для качеств. и количеств. функцион. анализа получили также избирательные и достаточно чувствительные методы ИК спектроскопии и ЯМР.

Возникновение стереоспецифического анализа орг. веществ во 2-й пол. 20 в. связано с развитием хроматографич. методов. Для разделения энантиомеров чаще всего предварительно проводят реакцию между анализируемыми веществами и оптически активными реагентами с образованием диастереомеров, которые затем разделяют методами газо-жидкост-ной или высокоэффективной жидкостной хроматографии на колонках с оптически активными неподвижными фазами.

Молекулярный анализ орг. веществ основан главным образом на применении хроматографии и разл. спектральных методов, которые позволяют устанавливать строение орг. соединений.

Фазовый анализ, позволяющий качественно и количественно анализировать кристаллич. формы орг. соед., проводят с помощью рентгенографии и электронографии. Рентгеновский, структурный анализ позволяет устанавливать с высокой точностью структурную ф-лу орг. вещества, определить длины связей между атомами и углы между связями.

Перечисленные выше методы анализа основаны на прямом определении анализируемых веществ или полученных из них производных. В органических веществ анализе часто применяют также косвенные методы. Так, например, карбоновые кислоты можно выделить из анализируемой смеси в виде труднорастворимых серебряных или др. солей и затем методом атомно-абсорбц. спектроскопии или рентгено-флуоресцентного анализа определить кол-во соответствующего металла; по результатам такого анализа можно рассчитать содержание карбоновой кислоты. В жидкостной хроматографии эффективно использование косвенного детектирования разделяемых веществ, при котором к подвижной фазе прибавляют активный компонент, образующий с продуктами разделения или с хроматографируемыми веществами легко детектируемые соединения.

Приемы анализа и используемая аппаратура зависят от конкретной задачи О. в. а.: определение основного вещества смеси, орг. или неорг. примеси в орг. веществах, орг. примеси в неорг. веществе или анализ сложной многокомпонентной смеси веществ.

Методы О. в. а. широко используют при разработке технологии пром. произ-ва орг. продуктов и в процессе самого произ-ва для разработки методик анализа сырья, вспомогат. веществ, промежут. продуктов на разных стадиях произ-ва, для контроля производств. процесса, готовой продукции, сточных вод и газов.х выбросов, для идентификации примесей в промежуточных и конечных продуктах, а также для разработки аналит. методик, обеспечивающих проведение необходимых кинетич. исследований. Во всех случаях необходимо выбирать оптим. варианты методов анализа и их сочетания в соответствии с требованиями к экспрессности, воспроизводимости, точности и т.п.

При разработке аналит. части нормативно-техн. документации на сырье, вспомогат. материалы и готовую продукцию прежде всего устанавливают минимально необходимое и достаточное число аналит. показателей. К таким показателям относят температуру плавления, растворимость, содержание осн. вещества в продукте, которое определяют прямым методом (обычно титриметрически с применением потенциометрии) или косвенно, вычитая из массы всего продукта массу примесей, определяемых хроматографич. (чаще всего), электрохим. или спектрофотометрич. методами. При использовании функцион. анализа для определения осн. вещества обычно выбирают методику, предусматривающую определение этого вещества по функц. группе, образовавшейся на последней стадии его получения. При необходимости, когда анализируемое вещество получают многостадийным синтезом, его определяют по разным функц. группам. Аналит. методы, выбираемые для анализа сырья и готовой продукции, обязательно должны обладать главным образом хорошей воспроизводимостью и точностью.

Методы анализа, применяемые в контроле произ-ва, должны быть экспрессными и непрерывными (напр., редокс-метрия, рН-метрия, спектрофотометрия). В основе методик контроля процессов произ-ва орг. веществ часто лежит определение исчезающей функц. группы, т.е. группы, подвергающейся превращению на данной стадии произ-ва, что позволяет точно фиксировать конец соответствующей стадии. При этом широко используют тонкослойную, газо-жид-костную, высокоэффективную жидкостную хроматографию, спектрофотометрию, электрохим. методы, проточно-инжекц. анализ.

Для анализа промежут. продуктов произ-ва чаще всего применяют титриметрию, а для анализа реакц. смесей-комплекс хроматографич. и спектральных методов, в т.ч. хромато-масс-спектрометрию, сочетание газов.й хроматографии с ИК фурье-спектроскопией.

Большое значение приобрел анализ объектов окружающей среды. При разработке соответствующих методик анализа осн. требования к ним заключаются в высокой чувствительности и правильности идентификации определяемых веществ. Этим требованиям удовлетворяют хромато-масс-спектрометрия с использованием двух и более неподвижных фаз.

В клинич. анализе (анализ крови, мочи, тканей и др. объектов на содержание лек. веществ, метаболитов, стероидов, аминокислот и т.п.) важным является не только чувствительность, точность и экспрессность анализа, но и воспроизводимость его результатов. Когда последнее требование имеет решающее значение, применяют хромато-масс-спектрометрию в стандартных условиях, а также высокопроизводительный проточно-инжекц. анализ и разнообразные ферментные методы, обладающие высокой селективностью.

Лит.: Губен Вейль, Методы органической химии, т. 2, Методы анализа, пер. с нем . 4 изд., М.. 1963; Черонис Н. Д., Ма Т. С., Микро- и полумикро-методы органического функционального анализа, пер. с англ., М., 1973; Сиггиа С.. Ханна Дж. Г., Количественный органический анализ по функциональным группам, пер. с англ., М.; 1983. © Б. Я. Колоколов.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVIII
Контактная информация