новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Поверхностно-активные вещества


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Поверхностно-активные вещества (ПАВ), вещества, адсорбция которых из жидкости на поверхности раздела с другой фазой (жидкой, твердой или газообразной) приводит к значит. понижению поверхностного натяжения (см. Поверхностная активность). В наиболее общем и важном с практической точки зрения случае адсорбирующиеся молекулы (ионы) ПАВ имеют дифильное строение, т. е. состоят из полярной группы и неполярного углеводородного радикала (дифильные молекулы). Поверхностной активностью в отношении неполярной фазы (газ, углеводородная жидкость, неполярная поверхность твердого тела) обладает углеводородный радикал, который выталкивается из полярной среды. В водном растворе ПАВ на границе с воздухом образуется адсорбционный мономолекулярный слой с углеводородными радикалами, ориентированными в сторону воздуха. По мере его насыщения молекулы (ионы) ПАВ, уплотняясь в поверхностном слое, располагаются перпендикулярно поверхности (нормальная ориентация).

Концентрация ПАВ в адсорбционном слое на несколько порядков выше, чем в объеме жидкости, поэтому даже при ничтожно малом содержании в воде (0,01-0,1% по массе) ПАВ могут снижать поверхностное натяжение воды на границе с воздухом с 72,8•10-3 до 25•10-3 Дж/м2, т.е. практически до поверхностного натяжения углеводородных жидкостей. Аналогичное явление имеет место на границе водный раствор ПАВ - углеводородная жидкость, что создает предпосылки для образования эмульсий.

В зависимости от состояния ПАВ в растворе условно различают истинно растворимые (молекулярно-диспергированные) и коллоидные ПАВ. Условность такого разделения состоит в том, что одно и то же ПАВ может относиться к обеим группам в зависимости от условий и хим. природы (полярности) растворителя. Обе группы ПАВ адсорбируются на фазовых границах, т. е. проявляют в растворах поверхностную активность, в то время как объемные свойства, связанные с возникновением коллоидной (мицеллярной) фазы, проявляют лишь коллоидные ПАВ. Указанные группы ПАВ отличаются значением безразмерной величины, которая наз. гидрофильно-липофильным балансом (ГЛБ) и определяется отношением:


где -сродство (свободная энергия взаимодействия) неполярной части молекулы ПАВ к углеводородной жидкости (b-безразмерный параметр, зависящий от природы ПАВ, -своб. энергия взаимод. в расчете на одну группу CH2, v-число групп CH2 в углеводородном радикале), a-сродство полярной группы к воде. Для коллоидных ПАВ (b + или , где индексы m соответствуют минимальным значениям сродства, при котором начинают проявляться коллоидные свойства ПАВ. Минимальное число углеродных атомов в радикале для разных видов коллоидных ПАВ лежит в пределах 8-12, т.е. коллоидные ПАВ имеют достаточно большой углеводородный радикал. Вместе с тем коллоидные ПАВ должны обладать и истинной растворимостью в воде, т.е. полярность гидрофильной группы также должна быть достаточно высокой. Этому соответствует условие:


В нач. 60-х гг. 20 в. Д. Девисом была разработана шкала ГЛБ со значениями от О до 40. ПАВ с липофильными свойствами имеют низкие значения ГЛБ, с гидрофильными-высокие. Каждой группе атомов, входящей в молекулу ПАВ, приписывается групповое число. При сложении этих чисел получают ГЛБ по формуле:

ГЛБ = гидрофильных групповых чисел + 4- гидрофобных групповых чисел + 7.

Хотя понятие о ГЛБ является достаточно формальным, оно позволяет определять области применения ПАВ. Так, для образования эмульсий вода/масло ГЛБ лежит в пределах 3-6, эмульсий масло/во да-8-16, для смачивателей-7-9, для моющих средств-13-15.

Поверхностная активность ПАВ, относящихся к разным группам, определяется по-разному. Для истинно растворимых ПАВ она равна макс. значению производной

и измеряется по начальному участку изотермы адсорбции s(c)при с 0 (Г-число молей ПАВ, адсорбированных единицей поверхности, R-газовая постоянная, T-абс. температура). Для коллоидных ПАВ поверхностная активность Gмин = (s0 - sмин)/смин, где s0 - поверхностное натяжение чистого растворителя, sМИH-наименьшее (постоянное) значение s, а смин-соответствующая этому значению концентрация ПАВ. Дальнейшее введение в раствор ПАВ приводит к увеличению числа мицелл, а концентрация молекулярно-диспергированного ПАВ остается постоянной. Величина смин-критическая концентрация мицеллообразования (KKM). Она определяется как концентрация ПАВ, при которой в растворе возникает большое число мицелл, находящихся в термодинамическом равновесии с молекулами (ионами), и резко изменяются свойства раствора (электропроводность, поверхностное натяжение, вязкость, светорассеяние и т.д., см. Мицеллообразование).

Классификация ПАВ. В данной статье описывается классификация, принятая на III Международном конгрессе по ПАВ и рекомендованная Международной организацией по стандартизации (ISO)в 1960. Она основана на хим. природе молекул и включает четыре основного класса ПАВ: анионактивные, катионактивные, неионогенные и амфотерные. Иногда выделяют также высокомолекулярные (полимерные), перфторированные и кремнийорганические ПАВ, однако по химической природе молекул эти ПАВ м. б. отнесены к одному из вышеперечисленных классов.

Анионактивные ПАВ содержат в молекуле одну или несколько полярных групп и диссоциируют в водном растворе с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Это группы: COOH(M), OSO2OH(M), SO3H(M), где M-металл (одно-, двух- или трехвалентный). Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатическими цепями или алкилароматическими радикалами. Выделяют 6 групп анионактивных ПАВ.

1) Производные карбоновых кислот (мыла): RCOOM, ROOC (СН2)nСООМ, RC6H4 (СН2)nСООМ, RCH=CH — —(СН2)nСООМ. 2) Первичные и вторичные алкилсульфаты ROSO3M, R'R:CHOSO3M, алкиларилэтилсульфаты RC6H4C2H4OSO3M, алкилциклогексилэтилсульфаты RC6H10C2H4OSO3M и т.п. (см. Авироль, Ализариновое масло, Алкилсульфаты). 3)Алкил- и алкилбензолсульфонаты, сульфонаты сложных эфиров моно- и дикарбоновых кислот: RSO3M, RC6H4SO3M, ROOCCH2SO3M, ROOCCH2CH(COOR)SO3M (см. Алкилбензолсульфонаты, Нафталинсульфонаты, Сульфонаты). 4) Сульфо- и карбоксиэтоксилаты спиртов, сульфоэтоксилаты карбоновых кислот, сульфоэтоксилаты алкилфенилэтиловых спиртов, диметал-лич. соли сульфоянтарной кислоты, соли сульфатов непредельных кислот: RO(C2H4O)nSO3M, RO(C2H4O)nCH2COOM, RCOO (C2H4O)n SO3M, RC6H4 (C2H4O)2 SO3M, ROOCCH2CH •(COOM) SO3M, RCH (OSO3M)=CH (CH2)n—COOM. 5) Азотсодержащие ПАВ: амидосульфонаты RCONR'—R:—SO3M, амиды сульфокарбоновых кислот RR'NOC—R:—SO3M, амидосульфаты RCONR'- R:—OSO3M, амидокарбоксилаты RCO(NH-R'—CO)nOM, вещества с карбокси- и сульфогруппами RCONH—R—OCOR:(SO3M) —COOM. Вместо амидной группы во мн. таких веществах м.б. также сульфоамидная группа, например RC6H4SO2NHCH2CH2SO3M. 6) Соли перфторир. карбоновых кислот, перфторир. сульфоацетатов, моно- и диалкил-фосфатов и фосфонатов, перфторир. фосфонаты и др. соединения.

В анионактивных ПАВ катион м. б. не только металлом, но и орг. основанием. Часто это ди- или триэтаноламин. Поверхностная активность начинает проявляться при длине углеводородной гидрофобной цепи C8 и с увеличением длины цепи увеличивается вплоть до полной потери раствори-мости ПАВ в воде. В зависимости от структуры промежут. функц. групп и гидрофильности полярной части молекулы длина углеводородной части может доходить до C18. Бензольное ядро соответствует примерно 4 атомам С, перфто-рированная метиленовая группа CF2-примерно 2,5-3 мети-леновым группам.

Наиб. распространены алкилсульфаты и алкиларилсуль-фонаты. Оптим. поверхностно-активными свойствами обладают первичный додецилсульфат и прямоцепочечный доде-цилбензолсульфонат. Эти вещества термически стабильны, малотоксичны (ЛД50 1,5-2 г/кг, белые мыши), не раздражают кожу человека и удовлетворительно подвергаются биол. распаду в водоемах (см. ниже), за исключением алкиларил-сульфонатов с разветвленной алкильной цепью. Они хорошо совмещаются с др. ПАВ, проявляя при этом синергизм, порошки их негигроскопичны. Вторичные алкилсульфаты обладают хорошей пенообразующей способностью, но термически неустойчивы и применяются в жидком виде. Вторичные алкилсульфонаты обладают высокой поверхностной активностью, но весьма гигроскопичны. Перспективными являются ПАВ, у которых гидрофильная часть состоит из неск. функц. групп. Напр., динатриевые соли сульфоянтарной кислоты обладают хорошими санитарно-гигиенич. свойствами наряду с высокими коллоидно-хим. и технол. показателями при растворении в жесткой воде. ПАВ, содержащие сульфониламидную группу, обладают биол. активностью. Хорошими свойствами обладает также додецил-фосфат.

Катионактивными называют ПАВ, молекулы которых диссоциируют в водном растворе с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона-обычно галогенида, иногда аниона серной или фосфорной кислоты. Преобладающими среди катионактивных ПАВ являются азотсодержащие соед.; практич. применение находят и вещества, не содержащие азот: соед. сульфония [RR'R:S]+X- и сульфоксония [RR'R:SO]+Х-, фосфония [R3PR']+ X-, арсония [R3AsR'] + Х-, иодония (формула I). Азотсодержащие соед. можно разделить на след. осн. группы: 1) амины и их соли RNR'R: • HX; 2) моно- и бисчетвертичные аммониевые соед. алифатич. структуры [RNR'R:R''']+ X-, [RR'2N-R:—NR'2R]2+-, соед. со смешанной алифатич. и ароматич. структурой [RR'2 NC6H4NR'2 R]2 +- ; 3) четвертичные аммониевые соед. с раз л. функц. группами в гидрофобной цепи; 4) моно- и бисчетвертичные аммониевые соед. с атомом азота в гетероциклич. кольце. Последняя группа объединяет сотни ПАВ, имеющих пром. значение. Важнейшие из них-соед. пиридина, хинолина, фталазина, бензи-мидазола, бензотиазола, бензотриазола, производные пир-ролидина, имидазола, пиперидина, морфолина, пиперазина,

бензоксазина и др.; 5) оксиды аминов RR'R:N+O- (начато пром. произ-во); 6) полимерные ПАВ (II). Применяют в осн. поливинилпиридинийгалогениды.

Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионактивные, но они могут взаимодействовать химически с поверхностью адсорбента, например с клеточными белками бактерий, обусловливая бактерицидное действие. Взаимодействие полярных групп катионактивных ПАВ с гидроксильными группами волокон целлюлозы приводит к гидрофобизации волокон и импрегнированию тканей.

Неионогенные ПАВ не диссоциируют в воде на ионы. Их растворимость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего полиэтиленгликолевой цепи. По-видимому, при растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликолевого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении температуры растворимость неионогенных ПАВ уменьшается, поэтому для них точка помутнения - верхний температурный предел мицеллообразования - является важным показателем. Mногие соединения, содержащие подвижной атом H (к-ты, спирты, фенолы, амины), реагируя с этиленоксидом, образуют неионогенные ПАВ RO (C2H4O)n H. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидрофильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ-жидкое состояние и малое пенообразование в водных растворах.

Неионогенные ПАВ разделяют на группы, различающиеся строением гидрофобной части молекулы, в зависимости от того, какие вещества послужили основой получения полигли-колевых эфиров. На основе спиртов получают оксиэтилированные спирты RO(C2H4O)nH; на основе карбоновых кислот - оксиэтилированные жирные кислоты RCOO (C2H4O)n H; на основе алкилфенолов и алкилнафтолов - оксиэтилированные алкилфенолы RC6H4O(C2H4O)nH и соед. RC10H6O-— (C2H4O)nH; на основе аминов, амидов, имидазолинов - оксиэтилированные алкиламины RN[ (C2H4O)n H]2, соединений RCONH(C2H4O)nH, соединений формулы III; на основе сульфамидов и меркаптанов- ПАВ типа RSO2NC(C2H4O)nH]2 и RS(C2H4O)nH. Отдельную группу составляют проксанолы (п л ю r о н и к и) - блоксополимеры этилен- и пропиленокси-дов НО (C2H4O)x (C3H6O)y (C2H4O)z H, где х, у и z варьируют от неск. единиц до неск. десятков, и проксамины (тетроники; формула IV) - блоксополимеры этилен- и пропиленоксидов, получаемые в присутствии этилендиамина. Алкилацетиленгликоли служат основой получения ПАВ типа H(OC2H4)n—OCR'R:C CCR'R''O (C2H4O)nH; эфиры фосфорной кислоты-типа (RO)2P(O)O(C2H4O)nH; эфиры пентаэритрита-типа V. Неионогенными ПАВ являются продукты конденсации гликозидов с жирными спиртами, карбоновыми кислотами и этиленоксидом. Выделяют также ПАВ группы сорбиталей (твинов, формула VI)-продукты присоединения этиленоксида к моноэфиру сорбитона и жирной кислоты. Отдельную группу составляют кремнийорганические ПАВ, например (CH3)3Si [OSi (CH3)2]n—(CH2)3O(C2H4O)mH.

Получение неионогенных ПАВ в большинстве случаев основано на реакции присоединения этиленоксида при повыш. температуре под давлением в присутствии катализаторов (0,1-0,5% CH3ONa, KOH или NaOH). При этом получается среднестатистическое. содержание полимергомологов, в которых молекулярно-массовое распределение описывается функцией Пуассона. Индивидуальные вещества получают присоединением к алкоголятам полигалогензамещенных полиэтиленгликолей. Коллоидно-хим. свойства ПАВ этого класса изменяются в широких пределах в зависимости от длины гидрофильной полигликолевой цепи и длины цепи гидрофобной части таким образом, что различной представители одного гомологического ряда могут быть хорошими смачивателями и эмульгаторами. Поверхностное натяжение гомологов оксиэтилированных алкилфенолов и первичных спиртов при постоянном содержании этиленоксидных групп уменьшается в соответствии с правилом Траубе, то есть с каждой дополнительной группой CH2 поверхностное натяжение снижается. В оптимальном варианте оно может достигать (28-30)• 10-3 Н/м при критической концентрации мицеллообразования. Мицеллярная масса весьма велика; для твинов, например, она достигает 1800. Неионогенные ПАВ менее чувствительны к солям, обусловливающим жесткость воды, чем анионактивные и катионактивные ПАВ. Смачивающая способность неионогенных ПАВ зависит от структуры; оптимальной смачивающей способностью обладает ПАВ разветвленного строения:


Оксиэтилированные спирты C10-C18 с n от 4 до 9и плюроники образуют самопроизвольные микроэмульсии масло/вода и вода/масло. Неионогенные ПАВ хорошо совмещаются с др. ПАВ и часто включаются в рецептуры моющих средств.

Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН раствора. Обычно эти ПАВ включают одну или несколько основных и кислотных групп, могут содержать также и неионогенную полигликолевую группу. В зависимости от величины рН они проявляют свойства катионактивных или анионактивных ПАВ. При некоторых значениях рН, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно растворимых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентированные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, P, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы.

По хим. строению и некоторому сходству свойств амфолитные ПАВ делят на 5 осн. групп: 1) алкиламинокарбоновые кислоты RNH (CH2)n COOH; алкильный радикал амина обычно нормальный (прямоцепочечный), но если он расположен между аминной группой и карбоксильной, иногда имеет разветвленный характер. К этой же группе относят алкиламино-фенилкарбоновые кислоты RNHC6H4COOH; алкиламинокарбоновые кислоты с первичной, вторичной или третичной аминогруппой RCH (NH2) COOH, RCH (NHR) COOH, R(CH3)NCH2COOH; с промежуточной гидроксильной, эфирной, сложноэфирной, амидной или сульфоамидной группой; вещества с двумя и более амино- и амидогруппами, с несколькими амино- и гидроксильными группами.

2) Алкилбетаины представляют собой наиболее важную группу цвиттер-ионных ПАВ. Их можно разделить на 5 осн. групп: а) алкилбетаины -С-алкилбетаины RCH [N+ (CH3)3] COO- и N-алкилбетаины RN+(CH3)2 СН2СОО- ; б) сульфит-, суль-фо-, сульфат- и фосфатбетаины RN+(CH3)2CH2CH2 RN+(CH3)2CH2CH2 , RC6H4CH2N+(CH3)2CH2CH2 RN+(CH3)2CH2CH(OH)CH2OP ; в) амидобетаины RCONH(CH2)3 N+(CH3)2COO- ; г) оксиэтилированные бетаины RN+[(C2H4O)pH][(C2H4O)gH]CH2COO-; д) др. цвиттер-ионные ПАВ.

3) Производные алкилимидазолинов, в молекулах которых анионные и катионные группы имеют примерно одинаковые константы ионизации (формулы VII и VIII), где R-алкил C7-C17, R'-H, Na, CH2COOM (M-металл). По структуре и методам синтеза выделяют бетаиновые ПАВ, включающие карбокси-, сульфо-, сульфат- или сульфоэфировую группу [формула IX; R' = (CH2)nCOO-, (CH2)3 , CH2CH(OH)CH2 ] и прочие ("небетаиновые") имидазолиновые ПАВ [формула X; R' = CH2COONa, (СН2)2 N (CH2COOH)2, (СН2)2 N= =CHC6H4SO3H, (CH2)2 OSO3H]. Сбалансированность ионизированных групп обеспечивает этим соединениям хорошие коллоидно-химические и санитарно-гигиенические свойства.

4) Алкиламиноалкансульфонаты и сульфаты (AAAC1 и AAAC2 соотв.). Анионно-ориентир. вещества легко переходят в цвиттер-ионную форму, что позволяет выделять их в чистом виде. Константа ионизации кислотной группы гораздо больше, чем основной, поэтому их применяют в щелочной среде. Однако в случае нескольких основных групп и при наличии рядом с кислотной группой др. гидрофильных групп эти вещества по свойствам и областям применения сходны с амфолитными ПАВ и обладают бактерицидным действием. В зависимости от констант ионизации можно выделить соли AAAC1 RN(R')-R:—SO3M, AAAC2 RN(R')-R: — OSO3M, производные ароматических аминосульфокислот RR'N—Ar—SO3M, аминосульфонаты с атомом N в гетероциклах (формула XI); аминофосфаты, аминофосфонаты и других аминосодержащих соединений типа RR'R:P(O)(OH)2, RR'R''OP(O)(OH)2, где R и R'-длинный и короткий углеводородные радикалы, R:-короткий двухвалентный радикал; соед. RN(CH2CH2SO3Na)2. Их отличие - хорошая способность диспергировать кальциевые мыла и устойчивость к солям жесткости воды.

5) Полимерные амфолитные ПАВ: природные (белки, нуклеиновые кислоты и т.п.); модифицированные природные (олигомерные гидролизаты белков, сульфатир. хитин); продукты ступенчатой конденсации аминов, формальдегида, альбумина, жирных кислот; производные целлюлозы, полученные введением карбоксильных и диэтаноламиноэтильных групп; синтетические, в молекулах которых сочетаются структурные особенности всех приведенных выше групп амфотерных ПАВ (см., например, формулы XII-XVI).

Применение ПАВ. Мировое производство ПАВ составляет 2-3 кг на душу населения в год. Примерно 50% производимых ПАВ используется для бытовой химии (моющие и чистящие средства, косметика), остальное-в промышленности и с. х-ве. Одновременно с ежегодным ростом проиводства ПАВ соотношение между их применением в быту и промышленности изменяется в пользу промышленности.

Применение ПАВ определяется их поверхностной активностью, структурой адсорбционных слоев и объемными свойствами растворов. ПАВ обеих групп (истинно растворимые и коллоидные) используют в качестве диспергаторов при измельчении твердых тел, бурении твердых пород (понизители твердости), для улучшения смазочного действия, понижения трения и износа, интенсивности нефтеотдачи пластов и т. д. Др. важный аспект использования ПАВ - формирование и разрушение пен, эмульсий, микроэмульсий. Широкое применение ПАВ находят для регулирования структурообразования и устойчивости дисперсных систем с жидкой дисперсионной средой (водной и органической). Широко используются ми-целлярные системы, образуемые ПАВ как в водной, так и в неводной среде, для которых важны не поверхностная активность ПАВ и не свойства их адсорбц. слоев, а объемные свойства: резко выраженные аномалии вязкости с повышением концентрации ПАВ вплоть до образования, например в водной среде, кристаллизац. структур твердого мыла или твердо-образных структур (в пластичных смазках на основе нефтяных масел).

ПАВ находят применение более чем в 100 отраслях народного хозяйства. Большая часть производимых ПАВ используется в составе моющих ср-в, в производстве тканей и изделий на основе синтетич. и прир. волокон. К крупным потребителям ПАВ относятся нефтяная, хим. промышленности, промышленность строит. материалов и ряд других. Наиолее важные применения ПАВ:

-бурение с глинистыми растворами и обратимыми эмульсиями вода/масло. Для регулирования агрегативной устойчивости и реологические характеристик растворов применяют высокомолекулярные ПАВ-водорастворимые эфиры целлюлозы, поли-акриламид и др., в эмульсии вводят кальциевые соли прир. и синтетич. жирных кислот (C16-C18 и выше), алкилароматич. сульфонаты, алкиламины, алкиламидоамины, алкилимидазолины;

-повышение нефтеотдачи пластов посредством мицеллярного заводнения (оксиэтилированные алкилфенолы и спирты, алкилароматич. сульфонаты);

-антиокислительные, противозадирные и др. присадки в производстве минер. масел (мыла синтетич. жирных кислот, нефтяные сульфонаты, оксиэтилир. спирты) и пластич. смазок (производные фенолов, ариламины, алкил- и арилфосфаты);

-регулирование смачивания при флотации железных и марганцевых руд (мыла прир. и синтетич. жирных кислот, высшие алифатич. амины), руд редких металлов (алкиларсоновые и алкилфосфоновые кислоты, алкилароматические сульфонаты);

-эмульсионная полимеризация, получение полистирола и др. виниловых полимеров (карбоксиметилцеллюлоза, поливиниловый спирт, мыла синтетич. жирных кислот, алкилсульфаты, оксиэтилированные спирты и алкилфенолы);

Производство хим. волокон (оксиэтилир. амины и амиды, проксанолы и проксамины, высшие спирты и кислоты);

Механическая обработка металлов: адсорбц. понижение прочности, повышение скоростей резания, строгания, фрезерования (мыла прир. и синтетич. жирных кислот, алкилароматич. сульфонаты, оксиэтилир. спирты и т.д.);

Промышленность строит. материалов: регулирование мех. и рео-логич. свойств бетонных смесей за счет адсорбц. модифицирования компонентов (эфиры синтетич. жирных кислот, сульфонаты, алкиламины, алкилсульфаты, оксиэтилир. жирные кислоты);

Производство синтетических моющих средств;

Улучшение структуры почв, предотвращение эрозионных процессов (ПАВ-полиэлектролиты - продукты неполного гидролиза полиакрилонитрила, продукты амидирования полиакриловой и полиметакриловой кислот, причем в составе полимерной цепи варьируются амидные, циклические имидные, карбоксильные и др. группы).

Биологическое разложение ПАВ. Водные растворы ПАВ в большей или меньшей концентрации поступают в стоки промышленных вод и в конечном счете-в водоемы. Очистке сточных вод от ПАВ уделяется большое внимание, т. к. из-за низкой скорости разложения ПАВ вредные результаты их воздействия на природу и живые организмы непредсказуемы. Сточные воды, содержащие продукты гидролиза полифосфатных ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а вода обедняется кислородом, что в свою очередь ухудшает условия существования др. форм жизни в воде.

Среди способов очистки сточных вод в отстойниках - перевод ПАВ в пену, адсорбция активным углем, использование ионообменных смол, нейтрализация катионактивными веществами и др. Эти методы дороги и недостаточно эффективны, поэтому предпочтительна очистка сточных вод от ПАВ в отстойниках (аэротенках) и в естеств. условиях (в водоемах) путем биол. окисления под действием гетеротрофных бактерий (преобладающий род-Pseudomonas), которые входят в состав активного ила. По отношению к этому процессу ПАВ принято делить на "мягкие" и "жесткие". К жестким ПАВ относятся некоторые алкилбензолсульфонаты (например, тетрапропилбензолсульфонат) и оксиэтилированные изооктилфенолы; в настоящее время они практически не производятся. Степень биоокисления т. наз. мягких ПАВ зависит от структуры гидрофобной части молекулы ПАВ: при ее разветвленности биоокисление резко ухудшается. Теоретически биоокисление идет до превращения органических веществ в воду и углекислый газ, практическая проблема сводится лишь к времени окисления, т. е. к кинетике процесса. Если окончат. окисление происходит медленно, ПАВ успевает произвести вредное влияние на живые организмы и природную среду.

При биохимической очистке отработанных растворов ПАВ окисление ведется в присутствии ферментов. С увеличением температуры скорость окисления увеличивается, но выше 350C ферменты разрушаются. Анионактивные ПАВ адсорбируются на межфазных поверхностях раздела, вследствие чего снижается ферментативный гидролиз жиров, белков и углеводов, приводящий к угнетению жизнедеятельности бактерий.

Механизм биоокисления ПАВ устанавливается путем изучения промежуточных продуктов распада. Так, в промежуточных продуктах распада алкилбензолсульфонатов обнаружены: алкилбензолсульфонаты с короткой алкильной цепью; сульфофенилкарбоновые кислоты в среднем с 4 атомами С в цепи; сульфокарбоновые кислоты с 5-6 атомами С; сульфодикарбоновые кислоты и сульфокислоты. Это позволяет предположить, что биоразложение начинается с концевой метильной группы. Чем ближе остаток продвигается к бензольному кольцу, тем окисление происходит медленнее. Конечной стадией является распад бензольного кольца на ненасыщенные соединения, которые окисляются достаточно быстро и полно.

Алифатические ПАВ окисляются быстрее, чем циклические, причем сульфонаты окисляются труднее, чем сульфаты.

По-видимому, это связано с тем, что сульфаты в воде гидролизуются. Прямоцепочечные первичные и вторичные алкилсульфаты за 1 ч полностью разрушаются в сточных водах. Алкилсульфаты с разветвленной цепью окисляются медленнее, а прямоцепочечные алкилбензолсульфонаты полностью распадаются лишь за 3 суток. Биоразложение катионактивных ПАВ мало изучено, некоторые исследователи не рекомендуют сбрасывать их в сточные воды.

Рост производства ПАВ привел к появлению крупных предприятий, являющихся локальными источниками загрязнения воды. Высококонцентрир. сточные воды этих предприятий м. б. очищены микробиол. методом, основанным на использовании высокоактивных культур микроорганизмов. Получены штаммы бактерий, разрушающих алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты, сульфоэтоксилаты и др. Идентифицированы промежут. продукты распада, которые являются аналогами природных веществ, нетоксичны и не оказывают неблагоприятного воздействия на окружающую среду. Один из важных результатов бактериального расщепления - отсутствие среди промежуточных продуктов распада веществ с явно выраженной дифильностью молекул. Метод дал положит. результаты для сточных вод, содержащих 500 мг/л ПАВ. Эффективность очистки составила 95-97% за время не более 12 ч. Среди грамотрицательных бактерий обнаружены микроорганизмы (деструкторы), которые усваивают ПАВ как питат. субстрат.

Лит.: Коллоидные поверхностно-активные вещества, пер. с англ. под ред. А. Б. Таубмана, 3. H. Маркиной, M., 1966; Физико-химические основы применения поверхностно-активных веществ, Ташкент, 1977; Поверхностно-активные вещества. Справочник, под ред. А. А. Абрамзона и Г. M. Паевого, Л., 1979; Мицеллообразование, солюбилизация и микроэмульсии, пер. с англ., M., 1980; А б r а м з о н А. А., Поверхностно-активные вещества. Свойства и применение, 2 изд., Л., 1981; Успехи коллоидной химии, под ред. И. В. Петрянова-Соколова и К. С. Ахмедова, Ташкент, 1987. С. И. Файнгольд, В. П. Тихонов.



выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXVII
Контактная информация